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Preface

This syllabus contains the notes of a course on Random Walks offered at the Mathematical Institute of Leiden
University. The course is aimed at second-year and third-year mathematics students who have completed an
introductory course on probability theory. The goal of the course is to describe a number of topics from mod-
ern probability theory that are centred around random walks. Random walks are key examples of a random
processes, and have been used to model a variety of different phenomena in physics, chemistry, biology and
beyond. Along the way a number of key tools from probability theory are encountered and applied.

Chapter 1 lists basic properties of finite-length random walks, including space-time distributions, stop-
ping times, the ruin problem, the reflection principle and the arcsine law. Chapter 2 describes basic limit
theorems for infinite-length random walks, including the strong law of large numbers, the central limit theo-
rem, the large deviation principle, and recurrence versus transience.

Chapter 3 shows how random walks can be used to describe electric flows on finite and infinite networks,
which leads to estimates of effective resistances of such networks via the Dirichlet principle and the Thom-
son principle. Chapter 4 deals with self-avoiding walks, which are lattice paths constrained not to intersect
themselves. The counting of such paths and the study of their spatial properties is quite challenging, espe-
cially in low dimensions. Chapter 5 focusses on random walks in the vicinity of an interface with which they
interact, which serve as a model for polymer chains acting as surfactants. Each contact with the interface
is either rewarded or penalised, and it is shown that a phase transition occurs from a desorbed phase to an
adsorbed phase as the interaction strength increases.

Chapter 6 introduces Brownian motion, which is the space-time continuous analogue of random walk.
Also Brownian motion is a key example of a random process. It arises as the scaling limit of random walk,
has powerful scaling properties, and is the pillar of stochastic analysis, the area that deals with stochastic
differential equations, i.e., differential equations with noise. Chapter 7, finally, treats a topic from finance,
namely, the binomial asset pricing model for stock exchange. It introduces the notion of arbitrage, and uses
random walks to compute the fair price of a certain financial derivative called option, which leads to the
discrete version of the so-called Black-Scholes formula.

A rough indication of the pace at which the course can be taught is as follows (1 lecture = 2×45 minutes):
Chapters 1+2: 3 or 4 lectures; Chapter 3: 3 lectures; Chapters 4+5: 3 lectures; Chapter 6: 1 or 2 lectures;
Chapter 7: 2 lectures. Some sections in the lecture notes are marked with a ?. These sections contain more
advanced material that provides important background but that is not required for the final examination.

The present notes were written up and polished during courses taught since the Spring of 2014. Com-
ments by students continue to be welcome.

Luca Avena, Markus Heydenreich, Frank den Hollander, Evgeny Verbitskiy, Willem van Zuijlen
Februari 2016
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Chapter 1

Finite-Length Random Walks

Random walks on discrete spaces are easy objects to study. Yet there is a certain complication coming from
the uncountability of infinite-length paths. In order to circumvent this difficulty, we start in this chapter by
considering finite-length random walks. The presentation in this chapter is based on unpublished notes of
H. Föllmer.

We use this chapter to illustrate a number of useful concepts for one-dimensional random walk. In later
chapters we will consider d-dimensional random walk as well. Section 1.1 provides the main definitions. Sec-
tion 1.2 introduces the notion of stopping time, and looks at random walk from the perspective of a fair game
between two players. Section 1.3 solves the classical problem of the “gambler’s ruin”. Section 1.4 proves the
so-called reflection principe and shows how this can be used to derive laws of first hitting times. Section 1.5,
finally, discusses the so-called arc sine law for last hitting times, which in a game setting records the last time
the two players had the same capital.

1.1 Definition

Throughout the sequel we adopt the notationN= {1,2, . . . } andN0 =N∪ {0}.
We begin by considering simple random walk on Z. Fix N ∈ N. The configuration space is given by the

binary sequences of length N , i.e.,

ΩN = {
ω= (ω1, . . . ,ωN ) ∈ {−1,+1}N }

. (1.1)

Write
Xk (ω) =ωk , 1 ≤ k ≤ N , ω ∈ΩN , (1.2)

to denote the projection on the k-th component ofω, which is to be thought of as the step of the random walk
at time k. The position of the random walk after n steps (i.e., after n units of time) is given by

Sn(ω) =
n∑

k=1
Xk (ω), 1 ≤ n ≤ N , S0(ω) = 0. (1.3)

In this way, for every ω ∈ ΩN we obtain a trajectory (Sn)N
n=0, also called a path (see Fig. 1.1). As probability

distribution onΩN we take the uniform distribution, i.e.,

PN (A) = |A|2−N , A ⊆ΩN . (1.4)

This means that all binary sequences ω (equivalently, all trajectories) have the same probability.

Definition 1.1. The sequence of random variables (Sn)N
n=0 on the finite probability space (ΩN ,PN ) is called a

simple random walk of length N starting at 0. In what follows we suppress the index N from the notation.

1
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Figure 1.1: Two possible trajectories for (Sn)N
n=0.

It follows from (1.4) that for 1 ≤ k1 < ·· · < kn ≤ N and xki ∈ {−1,1}, i = 1, . . . ,n,

P (Xk1 = xk1 , . . . , Xkn = xkn ) = 2N−n 2−N = 2−n . (1.5)

Exercise 1.1. (a) Use this to conclude that X1, . . . , XN are independent and identically distributed with P (Xk =
1) = P (Xk =−1) = 1

2 .
(b) Prove that a simple random walks has independent increments, which means that for all 0 < k1 < k2, · · · <
kn ≤ N the vectors Sk1 −S0,Sk2 −Sk1 , . . . ,Skn −Skn−1 are independent.
(c) Prove that an increment Sm −Sk for 0 < k < m ≤ N has the same distribution as Sm−k , which means that
P (Sm −Sk = a) = P (Sm−k = a) for all a ∈Z.
(d) Prove that a simple random walk satisfies the Markov property: P (Sn = an |Sn−1 = an−1, . . . ,S1 = a1) =
P (Sn = an |Sn−1 = an−1) for 0 < n ≤ N and a1, . . . , an ∈Z (such that P (Sn−1 = an−1, . . . ,S1 = a1) > 0).
(e) Prove that for 0 < k < m ≤ N one has P (Sm = b|Sk = a) = P (Sm−k = b − a) for a,b ∈ Z (assuming P (Sk =
a) > 0).

We obtain E(Xk ) = 0, E(X 2
k ) = 1, k = 1, . . . , N and E(Xk XL) = 0 for k 6= l . This leads us to our first result:

Claim 1.2. E(Sn) = 0, E(S2
n) = n.

Proof. Compute E(Sn) =∑n
k=1 E(Xk ) = 0 and E(S2

n) =∑n
k,l=1 E(Xk Xl ) = n.

It is in fact easy to determine the distribution of Sn :

Claim 1.3. For x ∈ {−n,−n+2, . . . ,n−2,n}, the probability that simple random walk is in x after n steps equals
(see Fig. 1.2)

P (Sn = x) =
(

n
n+x

2

)
2−n . (1.6)

Proof. Observe that Sn = x if and only if the first n components of ω take precisely k = n+x
2 times the value

+1. Indeed, then Sn(ω) = k (+1)+ (n −k) (−1) = 2k −n = x. Hence |{ω ∈Ω : Sn(ω) = x}| = (n
k

)
2N−n and

P (Sn = x) = |{ω ∈Ω : Sn(ω) = x}| 2−N =
(

n

k

)
2−n . (1.7)
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Figure 1.2: Plot of P (Sn = x), x ∈Z, for n = 10 (left) and n = 40 (right).

Remark 1.4. Several observations are in order.

(i) The distribution of Sn is symmetric around 0 :

P (Sn = x) = n!

( n−x
2 )!

(n+x
2

)
!

2−n = P (Sn =−x). (1.8)

(ii) The maximal weight of the distribution (also called mode) is achieved in the middle:

P (S2n = 0) = P (S2n−1 = 1) =
(

2n

n

)
2−2n . (1.9)

(The identity 2
(2n−1

n

)= (2n
n

)
is used.)

(iii) Stirling’s formula says that n! ∼ nne−n
p

2πn as n →∞, where∼means that the quotient of the left-hand
side and the right-hand side tends to 1 (i.e., an ∼ bn means limn→∞ an

bn
= 1). From this one deduces (see

Exercise 1.2)

P (S2n = 0) ∼ 1p
πn

, n →∞. (1.10)

In particular,
lim

n→∞P (a ≤ Sn ≤ b) = 0 for any finite interval [a,b], (1.11)

because (ii) and (1.10) imply that

P (a ≤ Sn ≤ b) ≤ (b −a +1) P (Sn ∈ {0,1}) → 0, n →∞. (1.12)

Exercise 1.2. (a) Deduce (1.10) from (1.8) with the help of Stirling’s formula.
(b) In Chapter 5 we will need the finer asymptotics P (S2n = 0)−P (S2n+2 = 0) ∼ 1/(2n

p
πn), n →∞. Deduce

this from (1.10). Hint: Show that P (S2n = 0)−P (S2n+2 = 0) = 1
2(n+1) P (S2n = 0).

Note: In order to be able to pass to the limit n →∞, we need to let N →∞ as well. In Chapter 2 we will deal
with the situation where N =∞.

1.2 Stopping times and games

We can interpret a simple random walk as a game, where in round k a player wins the amount Xk . Then Sn

is the “capital” of the player after n rounds. We have seen that E(Sn) = 0 for any 0 ≤ n ≤ N . In other words,
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the expected “gain” after n rounds is 0. An interesting question reads: “Is it possible to stop the game in a
favorite moment, i.e., can clever stopping lead to a positive expected gain?” Of course, the decision to stop
may only depend on the trajectory until that time: no “insider knowledge” about the future of the trajectory
is permitted. To answer this question we need to formalise the setting.

Definition 1.5. An event A ⊆Ω is observable until time n when it can be written as a union of basic events of
the form

{ω ∈Ω :ω1 = o1, . . . ,ωn = on}, o1, . . . ,on ∈ {−1,+1}. (1.13)

Write An to denote the class of events A that are observable until time n (which includes the empty union).

We further define the indicator function 1A for an event A ⊆Ω to be the random variable

1A(ω) =
{

1, if ω ∈ A,

0, if ω ∉ A.
(1.14)

Note that {;,Ω} = A0 ⊆ A1 ⊆ ·· · ⊆ AN = {the set of all subsets ofΩ}. Further note that An is closed with
respect to taking union, intersection and complement. A sequence (An)N

n=0 with these properties is called a
filtration. Our filtration has the following properties:

Lemma 1.6. For n = 0,1, . . . , N −1 and An ∈An ,

P
(

An ∩ {Xn+1 =+1}
)= 1

2 P (An), E
(
Xn+11An

)= 0. (1.15)

Exercise 1.3. Prove Lemma 1.6.

For a random variable Y :Ω→Zwe use the following notation for a ∈Z

{Y = a} = {ω ∈Ω : Y (ω) = a}, (1.16)

similarly we write {Y ≥ a} = {ω ∈Ω : Y (ω) ≥ a}, analogously {Y ≤ a} and {Y ∈ A} = {ω ∈Ω : Y (ω) ∈ A} for A ⊂Z.

Definition 1.7. A map T : Ω→ {0, . . . , N }∪ {∞} is called a stopping time if

{T = n} = {ω ∈Ω : T (ω) = n} ∈An , n = 0, . . . , N . (1.17)

Note: Since n 7→ An is non-decreasing, it follows that T : Ω→ {0, . . . , N } is a stopping time if and only if {T ≤
n} ∈An , n = 0, . . . , N .

Example. For a ∈Z, let
σa(ω) = inf{n ∈N : Sn(ω) = a} (1.18)

denote the first hitting time of a after time 0 (with inf;=∞), which is the first return time to a when S0(ω) = a.
Since {σa = n} ∈An , we have that min{σa , N } is a stopping time.

We are now ready to give an answer to the question posed at the beginning of this section. The answer is
somewhat unsatisfying for those who like a good gamble.

Theorem 1.8 (Impossibility of profitable stopping). For any stopping time T : ΩN → {0, . . . , N },

E [ST ] = 0, (1.19)

where ST = ST (ω)(ω) is the outcome of the trajectory ω at the stopping time T (ω).
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Proof. For every k = 0, . . . , N we have {T ≥ k} ∈Ak−1, because

{T ≥ k}c =
k−1⋃
`=0

{T = `} ∈Ak−1. (1.20)

Since

ST =
N∑

k=1
Xk1{T≥k}, (1.21)

it follows from (1.15) and (1.20) that

E(ST ) =
N∑

k=1
E

(
Xk1{T≥k}

)= 0. (1.22)

Theorem 1.8 is a special case of general theorem about the impossibility of profitable games, which we
state next. A game system is a sequence of R-valued random variables V1,V2, . . . ,VN : ΩN →R such that

{Vk = c} ∈Ak−1, c ∈R, k = 1,2, . . . , N . (1.23)

The interpretation is that in the k-th round you bet the amount Vk , so that the result of the k-th round is
Vk Xk . Mind that Vk can be positive, zero or negative. The total gain of the game is

SV
N (ω) =

N∑
k=1

Vk (ω) Xk (ω). (1.24)

Theorem 1.9 (Impossibility of profitable games). For any game system V1,V2, . . . ,VN , the expected gain van-
ishes: E(SV

N ) = 0.

Proof. It is sufficient to show that E(Vk Xk ) = 0 for all 1 ≤ k ≤ N (because of the linearity of expectation). Now,
Vk can be written as Vk =∑M

i=1 ci1{Vk=ci } for certain M ∈N and c1,c2, . . . ,cM ∈R. Furthermore, {Vk = ci } ∈Ak−1

for all i = 1, . . . , M , so that (1.15) implies

E(Vk Xk ) =
M∑

i=1
ci E

(
Xk1{Vk=ci }

)= 0. (1.25)

Note that any stopping time T can be written as a game system by putting Vk =1{T≥k}, so that

SV
N =

N∑
k=1

Xk 1{T≥k} =
T∑

k=1
Xk = ST . (1.26)

Thus, Theorem 1.8 is indeed a special case of Theorem 1.9.
Theorem 1.9 is quite powerful. We can use it to derive a link between the expected value of stopping times

and the variance of payoffs. To this end, let T be a stopping time, and consider the game system

Vk = Sk−11{T≥k}, k = 1, . . . , N . (1.27)

Since
S2

k = (Sk−1 +Xk )2 = S2
k−1 +2Sk−1Xk +1, (1.28)

we have
Vk Xk = 1

2

(
S2

k −S2
k−1 −1

)
1{T≥k}. (1.29)
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Summing over k = 1, . . . , N and recalling (1.24), we get

SV
N = 1

2

(
S2

T −T
)

. (1.30)

Theorem 1.9 implies that the expected value of (1.30) vanishes, and so we arrive at the following identity for
the variance of ST .

Corollary 1.10. For any stopping time T ,

Var(ST ) = E
(
S2

T

)= E(T ). (1.31)

1.3 The ruin problem

• “Millionaires should always gamble, poor men never.” [J. M. Keynes]

We continue the interpretation in the previous section of the N -step simple random walk as an N -round
game between two players, A and B , where in each round player A wins 1 Euro from player B with probability
1
2 , or loses 1 Euro with probability 1

2 . In this setting, Sn expresses the gain of player A after n rounds (and −Sn

the loss of player B after n rounds).
Let a,b ∈N. We interpret a and b as the initial capital of players A and B. Denote by σ−a and σb the first

hitting time of the states −a and b, respectively. The event

{σ−a <σb , σ−a ≤ N } (1.32)

expresses ruin of player A after N rounds (all his capital is lost). We are interested in the ruin probabilities of
players A and B:

r A
N = P

(
σ−a <σb , σ−a ≤ N

)
, r B

N = P
(
σb <σ−a , σb ≤ N

)
, (1.33)

in particular, the limits
r A = lim

N→∞
r A

N , r B = lim
N→∞

r B
N , (1.34)

which exist by monotone convergence.
We can calculate r A and r B as follows. Since the game is fair (= expected gain is 0), r A and r B only depend

on the initial capital a and b.

Exercise 1.4. Prove that the minimum of two stopping times is again a stopping time. Hint: One of the two
equivalent definitions of a stopping time in Definition 1.7 is more useful here than the other.

Hence TN = min{σ−a ,σb , N } is a stopping time. Therefore, by Theorem 1.8,

0 = E(STN ) =−ar A
N +br B

N +E
(
SN1{min{σ−a ,σb }>N }

)
. (1.35)

The last term is bounded from above by max{a,b}P (−a ≤ SN ≤ b), and therefore vanishes in the limit as
N →∞ by (1.11). Consequently,

−ar A +br B = 0. (1.36)

On the other hand,

1− (r A
N + r B

N ) = P
(

min{σ−a ,σb} > N
)≤ P (−a ≤ SN ≤ b) → 0, N →∞, (1.37)

and hence
r A + r B = 1. (1.38)
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We thus have two linear equations for r A ,r B , which we can solve as

r A = b

a +b
, r B = a

a +b
. (1.39)

This is the solution of the classical gambler’s ruin problem.
How long will we typically have to wait until one of the players is ruined? The expected waiting time for a

ruin can be computed with the help of Corollary 1.10:

E(TN ) = E
(
S2

TN

)= a2r A
N +b2r B

N +E
(
S2

N 1{min{σ−a ,σb }>N }
)→ a2r A +b2r B , N →∞. (1.40)

Filling in the values for r A and r B , we get
lim

N→∞
E(TN ) = ab. (1.41)

1.4 The reflection principle

Let a ∈N, and recall from (1.18) that σa = min{n ∈N : Sn = a} is the first hitting time of a after time 0.

Lemma 1.11 (Reflection Principle). For a,c ∈N,

P
(
Sn = a − c,σa ≤ n

)= P
(
Sn = a + c

)
. (1.42)

Proof. The proof follows from the observation that the number of n-step paths that first visit a and afterwards
end in a − c is equal to the number of n-step paths that end in a + c (see Fig. 1.3). Recall that all n-step paths
have the same probability 2−n .

Nσa(ω) n

a+ c

a

a− c

Figure 1.3: Illustration of the Reflection Principle.

Lemma 1.11 enables us to compute the law of the random variable σa .

Theorem 1.12. For a,n ∈N,

P
(
σa ≤ n

)= P
(
Sn 6∈ [−a, a −1]

)
, (1.43)

P
(
σa = n

)= 1
2

[
P (Sn−1 = a −1)−P (Sn−1 = a +1)

]
. (1.44)

Proof. The reflection principle is at the very heart of the proof. Write

P
(
σa ≤ n

)= ∑
b∈Z

P
(
Sn = b, σa ≤ n

)
(1.45)

= ∑
b∈Z
b≥a

P
(
Sn = b

)+ ∑
b∈Z
b<a

P
(
Sn = b, σa ≤ n

)
. (1.46)
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By the reflection principle in Lemma 1.11, the right-hand side equals P (Sn ≥ a)+P (Sn > a). By symmetry,
this is equal to P (Sn ≥ a)+P (Sn <−a), which proves (1.43).

To get (1.44), write P (σa = n) = P (σa ≤ n)−P (σa ≤ n −1), and apply (1.43).

Exercise 1.5. Write out the computation.

We expose a different route, one that introduces the useful concept of time reversal. Namely, note that (cf.
Figure 1.4)

#n-step paths from 0 to a with σa = n

= #(n −1)-step paths from 0 to a −1 without visit to a

= #(n −1)-step paths from a −1 to 0 without visit to a

= #(n −1)-step paths from 0 to 1−a without visit to 1. (1.47)

n− 1 n

a

a− 1

1

1− a

Figure 1.4: Illustration of (1.47).

Consequently,

P (σa = n) = P (Sn−1 = 1−a, σ1 > n −1, Xn = 1)

= 1
2 P (Sn−1 = 1−a, σ1 > n −1)

= 1
2

[
P (Sn−1 = 1−a)−P (Sn−1 = 1−a, σ1 ≤ n −1)

]
, (1.48)

and the last line, by symmetry and Lemma 1.11, equals 1
2 [P (Sn−1 = a −1)−P (Sn−1 = 1+a)].

Theorem 1.12 is very useful when it comes to computing distributions of certain observables of the ran-
dom walk, as we show in the three corollaries below.

Corollary 1.13 (Hitting time distribution). For a,n ∈N,

P
(
σa = n

)= a

n
P

(
Sn = a

)
. (1.49)

Proof. Let k(a,n) = a+n
2 , and note that k(a,n) = k(a +1,n −1) = k(a −1,n −1)+1. Note further that(

n

k

)
= n

k

(
n −1

k −1

)
,

(
n −1

k

)
= n −k

n

(
n

k

)
. (1.50)
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Hence, by (1.6),

P (Sn−1 = a −1) = 2−(n−1)

(
n −1

k(a,n)−1

)
= 2

k(a,n)

n
P (Sn = a) (1.51)

and

P (Sn−1 = a +1) = 2−(n−1)

(
n −1

k(a +1,n −1)

)
= 2

n −k(a,n)

n
P (Sn = a). (1.52)

Inserting these identities into (1.44), we get the claim.

Corollary 1.13 combined with (1.6) gives us a way to compute the law of hitting times.

Corollary 1.14 (Escape time distribution). For n ∈N,

P (σ0 > 2n) = P (S2n = 0). (1.53)

Proof. Theorem 1.12 is not immediately applicable, since it requires that a ∈N while here a = 0. In order to
apply the theorem, we first have to bring the problem into a suitable form. We start by writing

P (σ0 > 2n) = P (S1 6= 0, . . . ,S2n 6= 0)

= 2 P (S1 > 0, . . . ,S2n > 0)

= 2 2−2n # (2n −1)-step paths that start in 1 without visits to 0

= 2 2−2n # (2n −1)-step paths that start in 0 without visits to −1

= P (σ−1 > 2n −1) = P (σ1 > 2n −1).

(1.54)

Now we can apply Theorem 1.12. Indeed, using (1.43) with a = 1 and (1.9), we can rewrite the right-hand side
of (1.54) as

P (S2n−1 ∈ {−1,0}) = P (S2n−1 =−1) = P (S2n = 0). (1.55)

Remark 1.15. We see from (1.10) and (1.53) that

lim
n→∞P (σ0 > 2n) = 0. (1.56)

However, Corollary 1.14 tells us that

E(σ0) = ∑
n∈N0

P (σ0 > n) = 2
∑

n∈N0

P (σ0 > 2n) = 2
∑

n∈N0

P (S2n = 0) =∞, (1.57)

where the last equality follows from (1.10). Hence, one-dimensional simple random walk is recurrent, i.e.,
with probability 1 returns to 0 eventually, but with a large probability we have to wait a very long time until
its first return to 0 happens. Random walks with the property in (1.56)–(1.57) are called null-recurrent.

As another application of Theorem 1.12, we compute the probability that the random walk reaches a
certain level a ∈Nwithout returning to the origin.

Corollary 1.16 (Crossing probabilities). For a,n ∈N,

P (Sn = a,σ0 > n) = a

n
P (Sn = a). (1.58)

Proof. The proof is yet another example of the time inversion technique. Note that

#n-step paths from 0 to a without return to 0

= #n-step paths from a to 0 without visit to 0 in between

= #n-step paths from 0 to a with σa = n (1.59)

and use Corollary 1.13.
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1.5 ?he arc sine law for the last visit to the origin

So far we have computed the probability distributions of first visits to certain states. We will now consider the
last visit to the origin before time 2N :

L = max
{
0 ≤ n ≤ 2N : Sn = 0

}
. (1.60)

Note that L is not a stopping time. In the game interpretation of Section 1.3, L is the time when one of the
two players takes the lead for the rest of the game. In view of (1.10), we might guess that L/2N ≈ 1. However,
the answer is a little more complex.

0 50 100 150 200

0.
01

0.
02

0.
03

0.
04

0.
05

Figure 1.5: Plot of P (L = n) for n = 0, . . . ,200 and N = 200.

Theorem 1.17. For n ∈N0 with n ≤ N ,

P (L = 2n) = P (S2n = 0)P (S2N−2n = 0) = 2−2N

(
2n

n

) (
2N −2n

N −n

)
. (1.61)

Proof. The number of paths of length 2N with L = 2n is equal to the number of paths of length 2n with S2n = 0
times the number of paths of length 2N −2n with σ0 > 2N −2n. Hence

P (L = 2n) = P (S2n = 0) P (σ0 > 2N −2n) = P (S2n = 0) P (S2N−2n = 0) (1.62)

by Corollary 1.14.

The distribution in Theorem 1.17 is called the discrete arc sine distribution (see Fig. 1.5). Note that it is sym-
metric around N , and has peaks for small and for large values of n. Apparently, either the winner takes the
lead early on, or the game is tight until the very end.

What is the reason for the name arc sine distribution? We again use Stirling’s formula to approximate the
binomial coefficients in (1.62), to write

P (L = 2n) ∼ 1

π
p

n(N −n)
∼ 1

N
f

(
n

N

)
, n, N , N −n →∞, (1.63)

with f the function f (x) = 1
π
p

x(1−x)
, x ∈ [0,1]. Hence

P

(
L

2N
≤ x

)
∼ ∑

n∈N0
n
N ≤x

1

N
f

(
n

N

)
∼

∫ x

0
f (y)d y = 2

π
arcsin

p
x, N →∞. (1.64)



Chapter 2

Infinite-Length Random Walks

We extend the set-up of Chapter 1 in two ways: (1) we consider simple random walk on the d-dimensional
lattice Zd , d ∈ N, rather than on the integers Z; (2) we extend the probability space to deal with an infinite
time horizon, abandoning the finite time horizon N that was used in Chapter 1. These extensions are made
in Section 2.1. After that we state three basic limit theorems, formulated in Sections 2.2–2.4. In Section 2.5 we
address the question of recurrence versus transience.

2.1 Definitions

2.1.1 Higher dimension

Recall the definitions given at the beginning of Chapter 1. Fix d ∈N. For x ∈Zd , write

|x| =
(

d∑
j=1

x2
j

)1/2

, (2.1)

where x j is the j -th component of the vector x. For given N ∈N, we have

ΩN = {
ω= (ω1, . . . ,ωN ) : ωk ∈Zd , |ωk | = 1 ∀1 ≤ k ≤ N

}
(2.2)

as the configuration space, replacing (1.1). As before, Xk (ω) =ωk , 1 ≤ k ≤ N , and Sn(ω) =∑n
k=1 Xk (ω), 1 ≤ n ≤

N , and S0(ω) = 0. Furthermore, we still have the uniform distribution on all paths of length N :

PN (A) = |A| (2d)−N , A ⊆ΩN , (2.3)

which replaces (1.4). Note that now Sn is a d-dimensional random vector

Sn =



S(1)
n

S(2)
n

...

S(d)
n

 , 0 ≤ n ≤ N , S( j )
n ∈Z, j = 1, . . . ,d . (2.4)

2.1.2 Infinite time horizon

To extend the probability space to infinite trajectories, i.e., N =∞, requires a more argument subtle. However,
there is a standard way to deal with this problem.

11
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Let 0 < N < M , and denote by πN : ΩM →ΩN the projection

πN (ω1, . . . ,ωN ,ωN+1, . . .ωM ) = (ω1, . . . ,ωN ). (2.5)

Then the sequence of probability spaces (Ω1,P1), (Ω2,P2), . . . satisfies the compatibility condition

PM
({
ω ∈ΩM : πNω= ω̄})= (2d)M−N

(2d)M
= 1

(2d)N
= PN

(
{ω̄}

)
, 0 < N < M , ω̄ ∈ΩN , (2.6)

sometimes also referred to as the consistency condition. The so-called Kolmogorov extension theorem (see
Fig. 2.1) states that for any sequence (Ω1,P1), (Ω2,P2), . . . satisfying the above compatibility condition there
exists a unique probability measure P on the space of infinite sequencesΩ=Ω∞, i.e.,

Ω∞ = {ω= (ω1,ω2, . . . ) : ωk ∈Zd , |ωk | = 1 ∀k ∈N}, (2.7)

such that (with πN defined onΩ∞ analogously as onΩM as in (2.5))

P
({
ω ∈Ω : πNω= ω̄})= 1

(2d)N
= PN

({
ω̄

})
, N ∈N, ω̄ ∈ΩN . (2.8)

Figure 2.1: Andrey Kolmogorov, the founding father of probability theory.

Definition 2.1. The sequence of random variables (Sn)n∈N0 on the infinite probability space (Ω,P ) is called
simple random walk starting at 0.

We will also define random walks starting at x, for some x ∈Zd . Whenever (Sn)n∈N0 is a random walk on
(Ω,P ) starting at 0 we could consider (Sn + x)n∈N. Usually instead we will define another probability Px on Ω
such that the law of (Sn)n∈N under Px is the same as the law of (Sn +x)n∈N under P , so that for all N ∈N0

Px (S1 = a1, . . . ,SN = aN ) = P (S1 +x = a1, . . . ,SN +x = aN )

(and Ex ( f (S1, . . . ,SN )) = E( f (S1 +x, . . . ,SN +x))). (2.9)

Whenever m ∈ N is such that P (Sm = x) > 0, then one also has the equality Px (S1 = a1, . . . ,SN = aN ) =
P (Sm+1 = a1, . . . ,Sm+N = aN |Sm = x). We will also say Px is the law of S given S0 = x.

In the literature, the term random walk refers to any stochastic process of independent and identically
distributed jumps drawn from Zd . For the purpose of this course we limit our attention to the special case
of simple random walk considered here. Random walks are the simplest examples of discrete-time stochas-
tic processes. In Chapter 4 we will encounter random objects derived from random walks that cannot be
interpreted as stochastic processes, namely, self-avoiding walks.
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Definition 2.2. Similar to Definition 1.5 one defines (but with Ω = Ω∞, the space of infinite sequences) an
event A ⊆Ω to be observable until time n when it can be written as a union of basic events of the form

{ω ∈Ω :ω1 = o1, . . . ,ωn = on}, o1, . . . ,on ∈Zd , |oi | = 1. (2.10)

Write An to denote the class of events A that are observable until time n.
A map T : Ω→N0 ∪ {∞} is called a stopping time if

{T = n} = {ω ∈Ω : T (ω) = n} ∈An , n ∈N0. (2.11)

For A ⊂Zd we define τA :Ω→N0 ∪ {∞} by

τA(ω) = inf{n ∈N0 : Sn(ω) ∈ A}. (2.12)

For a ∈Zd we will write τa = τ{a}.

Exercise 2.1. Show that τA is a stopping time.

One has the following facts (these can be proved, but the proof is rather administrative); for z ∈Zd , o ∈Zd ,
|o| = 1, A,B ⊂Zd with z ∉ A and z ∉ B and for k ∈N0

Pz (τA = k|S1 = z +o) = Pz+o(τA = k −1), (2.13)

Pz (τA < τB |S1 = z +o) = Pz+o(τA < τB ). (2.14)

Exercise 2.2 (Roulette). Roulette is one of fairest games that is offered in a casino. If you bet on the colour
red (or black), then your bet will be doubled if the ball lands in one of the 18 red (black) holes. If the ball lands
in a hole with the other colour, then the bet is lost. An exception is the special hole “0” (color green): if the
ball lands in that hole, then half the bet is lost (see Fig. 2.2). In order to include the latter, you assume that
you double your bet with probability p = 18.25/37 and lose your bet with probability q = 1−p = 18.75/37.

Figure 2.2: Roulette wheel.

Suppose that initially you have $500, and your ambition is to double that amount. Since you loose on
average in every bet, your best strategy is to achieve your goal in as few steps as possible, betting all the $500
at once. In that case the probability of achieving your goal is p. However, the casino imposed the special rule
that you are allowed to bet at most $10 at a time. What is your chance of accumulating the desired $1000
(without bankruptcy)?

Solve this problem via the following steps. Define a simple random walk (Sn)∞n=1 with probability to go up
p and go down q (one does this by letting X1, X2, . . . be independent random variables with P (Xk =+1) = p,
P (Xk =−1) = q). Consider the quantity

A(z) = Pz (τM < τ0), (2.15)
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(note that A(z) equils P (τM−z < τ−z )) for z, M ∈Nwith z ≤ M . So A(z) is the probability that the random walk
S starting in z reaches M before 0.
(a) Prove that A(z) satisfies the relation

A(z) = q A(z −1)+p A(z +1) (2.16)

with boundary values A(0) = 0 and A(M) = 1.
(b) Let B(z) = A(z+1)− A(z) for z = 0, . . . , M −1. Derive a recursive relation for B(z) (i.e., B(z+1) expressed as
a function of B(z)) and give a solution of B(z) in terms of B(0). Derive the solution for A.
(c) What is your chance of accumulating the desired $1000 (without bankruptcy)?

2.2 The strong law of large numbers

Limit theorems form the essence of any introductory probability course. There are two versions of the law
of large numbers, the strong one and the weak one. In our situation the strong law of large numbers (SLLN)
applies: Since X1, X2, X3, . . . form an i.i.d. (= independent and identically distributed) sequence of random
variables with E(|X1|) =∑

x∈Zd |x|P (X1 = x) <∞, we have

lim
n→∞

1

n

n∑
k=1

Xk = E(X1) P −a.s., (2.17)

which means P (limn→∞ 1
n

∑n
k=1 Xk = E(X1)) = 1.

Mind that the Xk ’s are d-dimensional vectors Xk = (X (1)
k , . . . , X (d)

k ), and so also E(X1) is a d-dimensional

vector. By symmetry we have E(X ( j )
1 ) =∑

x∈Zd x j P (X1 = x) = 0 for all j = 1, . . . ,d . In other words, E(X1) is the
null-vector, and we arrive at our first limit result for random walks.

Theorem 2.3 (SLLN). For simple random walk on Zd ,

lim
n→∞

Sn

n
= 0 P −a.s. (2.18)

This theorem may be interpreted as saying that simple random walk on Zd grows sublinearly, also called
subballistically.

2.3 The central limit theorem

Like for the SLLN, we can readily feed our simple random walk into the standard central limit theorem (CLT)
for i.i.d. random variables. The only (slight) complication is that we need a multi-dimensional version of the
CLT, in which (co-)variances are given by a matrix rather than by a number.

For µ ∈ Rd and a positive definite matrix Σ ∈ Rd×d , the d-dimensional normal distribution Nd (µ,Σ) has
probability density function (see Fig. 2.3)

φd (x) = 1√
(2π)d det(Σ)

exp
{
− 1

2
(x −µ)TΣ−1(x −µ)

}
, x ∈Rd . (2.19)

The probability of a set A ⊂Rd is given by
∫

Aφd (x)d x. The CLT for sums of i.i.d. d-dimensional vectors states
that

1p
n

(
n∑

k=1
[Xk −E(X1)]

)
(2.20)
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converges in distribution to a d-dimensional centered normal distribution, i.e., µ = 0 and the covariance
matrix Σ has elements

Σi j = Cov
(
X (i )

1 , X ( j )
1

)
, 1 ≤ i , j ≤ d . (2.21)

We have already shown that E(X1) is the d-dimensional null-vector. In our situation,

Cov
(
X (i )

1 , X ( j )
1

)= E
(
X (i )

1 X ( j )
1

)= ∑
x∈Zd

xi x j P (X1 = x) =
{

1/d , i = j ,

0, i 6= j .
(2.22)

Thus, Σ is the unit matrix Id scaled by the factor 1/d .

Theorem 2.4 (CLT). For simple random walk on Zd , n−1/2Sn converges in distribution to Nd (0,d−1Id).

Figure 2.3: The bivariate normal distribution N2(µ,Σ).

2.4 The large deviation principle

The CLT implies that

lim
n→∞P

(|Sn | ≥ a
p

n
)= ∫

|x|≥a
φd (x)d x, a ∈ [0,∞). (2.23)

Thus, simple random walk typically deviates from 0 by an amount of order
p

n. In what follows we consider
events of the form {|Sn | ≥ an}, a ∈ [0,∞). These are rare events, in the sense that their probability tends to
zero as n →∞. Large deviation theory analyses how fast, namely, exponentially fast in n. In order to simplify
the presentation, we only consider the case of one dimension (d = 1).

Figure 2.4: Harald Cramér.

The following theorem is a special version of a theorem proved by Cramér (see Fig. 2.4) in 1938 for large
deviations of the empirical average of i.i.d. random variables.
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Theorem 2.5 (LDP). For a > 0,

lim
n→∞

1
n logP (Sn ≥ an) = lim

n→∞
1
n logP (Sn ≤−an) =−I (a) (2.24)

with

I (a) =
{

log2+ 1+a
2 log 1+a

2 + 1−a
2 log 1−a

2 , a ∈ [−1,1],

∞, otherwise,
(2.25)

where 0log0 = 0.

Proof. The claim is trivial for a > 1. Let a ∈ (0,1]. Then

P (Sn ≥ an) = 2−n
∑

k≥ 1+a
2 n

(
n

k

)
. (2.26)

This yields the estimate

2−n Qn(a) ≤ P (Sn ≥ an) ≤ n 2−n Qn(a) (2.27)

with

Qn(a) = max
k≥ 1+a

2 n

(
n

k

)
. (2.28)

The maximum is attained at k = d(1+a)n/2e, the smallest integer larger than or equal to (1+a)n/2. Stirling’s
formula, as quoted above (1.10), therefore allows us to infer

lim
n→∞

1

n
logQn(a) =−1+a

2 log 1+a
2 − 1−a

2 log 1−a
2 . (2.29)

Combining (2.27)–(2.29), we get the statement for a ∈ (0,1]. The case a = 0 corresponds to the typical be-
haviour.

The function z 7→ I (z) is called the rate function. Note that I is infinite outside [−1,1], finite and strictly convex
inside [−1,1], and has a unique zero at 0. The latter corresponds to the SLLN (see Fig. 2.5).

z

I (z)

0 1−1
s

ss
∞∞

Figure 2.5: The rate function for one-dimensional simple random walk.

Exercise 2.3. The goal of this exercise is to show that I is a convex function.
Let J ⊂R be an interval in R (which may equal R itself). A function f : J → [−∞,∞] is called convex (on J ) if

f (λx + (1−λ)y ≤λ f (x)+ (1−λ) f (y) for all x, y ∈ J and λ ∈ [0,1]. (2.30)
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(a) Show that whenever Jg , Jh are intervals inR, g : Jg → [−∞,∞], h : Jh → [−∞,∞] are convex functions, then
so is g +h on Jg ∩ Jh . Show that if g (Jg ) ⊂ Jh then h ◦ g is convex.
(b)[Bonus] Show that f : J →R is convex if and only

f (z)− f (y)

z − y
≥ f (y)− f (x)

y −x
for all x, y, z ∈ J with x < y < z. (2.31)

Use this to show the following: (1) If J is an open interval and f is differentiable, then f is convex if and only if
f ′(y) ≥ f ′(x) for all x, y ∈ J with y > x. (2) If J is an open interval and f is twice differentiable, then f is convex
if and only if f ′′ ≥ 0.
(c) Use (b) to show that x 7→ x log x is convex on (0,1).
(d) Use (a) and (c) to show that x 7→ I (x) is convex on (−1,1).
(e) Show that limx↓−1 I (x) = I (−1) and limx↑1 I (x) = I (1). Use this to show I is convex on [−1,1].
(f) Show that I is convex (on R).

Exercise 2.4. The goal of this exercise is to show that the LDP in Theorem 2.5, together with the fact that
a 7→ I (a) has a unique zero at a = 0, implies the SLLN in Theorem 2.3.
(a) Show that P (|n−1Sn | ≥ ε) = 2P (n−1Sn ≥ ε) for ε> 0.
(b) Fix ε> 0. Show that for every δ> 0 there exists an N ∈N (depending on ε and δ) such that P (n−1Sn ≥ ε) ≤
e−n[I (ε)−δ] for all n ≥ N .
(c) Use the Borel-Cantelli lemma, a special case of which states the following: If

∑
n∈N0

P (|Xn −X | ≥ ε) <∞ for
all ε> 0, then limn→∞ Xn = X P-a.s.

2.5 Recurrence versus transience

One of the most natural questions to ask about a random walk is whether it is certain to return to its starting
point or not.

Definition 2.6. The random walk (Sn)n∈N0 is called recurrent when P (σ0 < ∞) = 1. Otherwise, it is called
transient.

We have seen in (1.56) that one-dimensional simple random walk is recurrent. What about higher dimen-
sions? It turns out that the answer, which was given by George Polya (see Fig. 2.6) in 1921, depends on the
dimension.

Theorem 2.7. Simple random walk is recurrent in dimension d = 1,2 and transient in dimension d ≥ 3.

Figure 2.6: George Pólya.
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2.5.1 Proof of Polya’s theorem

In order to prove Theorem 2.7, we introduce a new object that is important in its own right.

Definition 2.8. The random walk Green function is defined by

G(x;1) = ∑
n∈N0

P (Sn = x), x ∈Zd . (2.32)

Note that

G(x;1) = ∑
n∈N0

E(1{Sn=x}) = E

( ∑
n∈N0

1{Sn=x}

)
(2.33)

and so G(x;1) equals the expected number of visits to x. There is an intricate relationship between the Green
function and recurrence.

Theorem 2.9 (Criterion for recurrence). The random walk (Sn)n∈N0 is recurrent if and only if G(0;1) =∞.

Proof. We start by claiming

P (Sn = 0) =
n∑

i=1
P (σ0 = i )P (Sn−i = 0), n ∈N. (2.34)

Indeed, i accounts for the first return time to 0, and then there are n − i steps left, after which the walk must
be at the origin again. Let z ∈ [0,1], and consider the generating functions

G(0; z) = ∑
n∈N0

znP (Sn = 0), F (0; z) = ∑
n∈N

znP (σ0 = n). (2.35)

Mind that {σ0 = 0} =; by the definition of σ0 (recall (1.18)), and hence P (σ0 = 0) = 0. Multiplying both sides
of (2.34) by zn , summing over n ∈N and using that P (S0 = 0) = 1, we get

G(0; z) = 1+ ∑
n∈N

znP (Sn = 0) = 1+ ∑
n∈N

n∑
i=1

zi+(n−i )P (σ0 = i )P (Sn−i = 0)

= 1+ ∑
i∈N

zi P (σ0 = i )
∑

j∈N0

z j P (S j = 0) = 1+F (0; z)G(0; z),
(2.36)

where we take z ∈ [0,1) to make sure that the sums converge. This relation can also be written as F (0; z) =
1−G(0; z)−1. Thus, we have

P (σ0 <∞) = ∑
n∈N

P (σ0 = n) = F (0;1) = lim
z↑1

F (0; z) = 1− lim
z↑1

1

G(0; z)
, (2.37)

where the last two equalities use monotone convergence.
If G(0;1) =∑

n∈N0
P (Sn = 0) <∞, then

lim
z↑1

G(0; z) =G(0;1) = ∑
n∈N0

P (Sn = 0) <∞ (2.38)

and

F (0;1) = 1− lim
z↑1

1

G(0; z)
= 1− 1∑

n∈N0
P (Sn = 0)

< 1, (2.39)

which means that the random walk is transient. On the other hand, if G(0;1) = ∑
n∈N0

P (Sn = 0) = ∞, then
we have limz↑1 G(0; z)−1 = 0. Indeed, fix ε> 0, and find N = N (ε) such that

∑N
n=0 P (Sn = 0) ≥ 2/ε. Then, for z

sufficiently close to 1, we have
∑N

n=0 zn P (Sn = 0) ≥ 1/ε. Consequently, for such z,

1

G(0; z)
≤ 1∑N

n=0 zn P (Sn = 0)
≤ ε. (2.40)

Since ε > 0 is arbitrary, it follows that limz↑1 G(0; z)−1 = 0. Thus, we find that F (0;1) = 1, and so the random
walk is recurrent.
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Exercise 2.5. Prove that G(0;1) =∞ if and only if G(x;1) =∞ for all x ∈Zd . Hint: Show that for every x ∈Zd

there exists an event Ax such that P (Ax ) > 0 and G(x;1) ≥ P (Ax )G(0;1).

2.5.2 ? Fourier analysis

In view of Theorem 2.9, it remains to show that G(0;1) =∞ for d = 1,2 and G(0;1) <∞ for d ≥ 3. There are
many ways to achieve this goal. For example, a local central limit theorem yields the asymptotics of P (Sn = 0)
as n →∞, which in turn yields the desired result. Below we pursue a different line of argument, namely, one
that involves characteristic functions. In Chapter 3 we encounter yet another argument.

Let us start by recalling a few basic facts about characteristic functions. A finite measureµ onZd uniquely
determines its characteristic function

φµ(k) = ∑
x∈Zd

e i k·xµ({x}), k ∈ [−π,π)d , (2.41)

where k · x = ∑d
j=1 k j x j is the standard d-dimensional inner product, with k j the j -th component of the

vector k. Conversely, given the characteristic function φµ, the measure µ can be retrieved through the so-
called Fourier inversion formula

µ({x}) = 1

(2π)d

∫
[−π,π)d

e−i k·x φµ(k)dk, x ∈Zd . (2.42)

An extremely handy property of characteristic functions is the convolution rule, which says that the charac-
teristic function of the sum of two independent random variables is equal to the product of the characteristic
functions of the two random variables.

Let us now see how this formalism can be used to solve our problem. In our setting, µ is the distribution
of the random variable X1, i.e.,

µ(x) = 1

2d
1{|x|=1}, x ∈Zd . (2.43)

Via symmetry we can check that the characteristic function of µ, which is
∑

x∈Zd e i k·x P (X1 = x), has the form

φ(k) = 1

d

d∑
j=1

cos
(
k j

)
, k ∈ [−π,π)d . (2.44)

Exercise 2.6. Prove (2.44).

Since Sn is the sum of the i.i.d. random variables X1, . . . , Xn , its characteristic function is the n-th powerφ(k)n ,
and the Fourier inversion formula in (2.42) gives

P (Sn = x) = 1

(2π)d

∫
[−π,π)d

e−i k·x φ(k)n dk, x ∈Zd . (2.45)

Hence, for z ∈ [0,1),

G(0; z) = ∑
n∈N0

znP (Sn = 0) = ∑
n∈N0

1

(2π)d

∫
[−π,π)d

znφ(k)n dk = 1

(2π)d

∫
[−π,π)d

1

1− zφ(k)
dk. (2.46)

Since limz↑1 G(0; z) =G(0;1) by monotone convergence, we see that

G(0;1) <∞ ⇐⇒
∫

[−π,π)d

1

1−φ(k)
dk <∞. (2.47)

Thus, we have found an integral test for transience.
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Exercise 2.7. Use the expression in (2.44) to prove that the right-hand side of (2.47) holds if and only if d ≥ 3.
This goes in two steps:
(a) Show that 2

π2 t 2 ≤ 1− cos t ≤ 1
2 t 2 for t ∈ [−π,π). Hint for the upper bound: First conclude from cos(x) ≤ 1

that sin(x) ≤ x for x ∈ [0,π). Hint for the lower bound: Show f (t ) = 1
π t −sin( t

2 ) is convex (on [0,π) for example)
(see Exercise 2.3). Show that this implies f ≤ 0. Then use 2sin2( t

2 ) = 1−cos(t ).
(b) Conclude from (a) that

2
π2d

d∑
j=1

k2
j ≤ 1−φ(k) ≤ 1

2d

d∑
j=1

k2
j , k ∈ [−π,π)d , (2.48)

and integrate the reciprocal of these bounds using polar coordinates to finish the proof. Hint: Use that for
any non-increasing function f : (0,∞) → [0,∞) and any λ> 0,∫

0<|k|≤λ
f (|k|)d x =Vd

∫ λ

0
f (r )r d−1 dr, (2.49)

where Vd is the volume of the d-dimensional unit sphere (the integral on the left-hand side is over Rd ).

This finishes the proof of Theorem 2.7.
Combining the results of Exercises 2.5 and 2.7, we see that G(x;1) <∞ for all x ∈ Zd when d ≥ 3. Since

G(x;1) is the expected number of visits to x, it must tend to zero as |x| → ∞: a transient random walk is
unlikely to hit a far away point. With the help of the same type of computation as above it is possible to derive
the asymptotic formula

G(x;1) ³ 1

|x|d−2
, |x|→∞, (2.50)

where ³ means that the ratio of the two sides is bounded away from 0 and ∞. Indeed, as in (2.45)–(2.46) we
have

G(x;1) = ∑
n∈N0

P (Sn = x) = ∑
n∈N0

1

(2π)d

∫
[−π,π)d

e−i k·x φ(k)n dk

= 1

(2π)d

∫
[−π,π)d

cos(k · x)

1−φ(k)
dk.

(2.51)

Standard Fourier theory shows that for |x| →∞ the integral is dominated by the small values of |k| (because
for large k the cosine oscillates fast), for which we can approximate cos(k ·x) = exp[−1

2 (k ·x)2+O(|k|3)] and 1−
φ(k) = 1

2d |k|2+O(|k|3). Substitute these relations into the right-hand side of (2.51) and go to polar coordinates
(as in Exercise 2.7), to obtain the claim in (2.50).



Chapter 3

Random Walks and Electric Networks

In this chapter we look at random walks and flows on electric networks. We show that these processes are
intimately related. In Section 3.1 we consider finite networks, beginning with linear and planar networks,
and afterwards building up a general theory. In Section 3.2 we turn to infinite networks. The exposition is
based on P.G. Doyle and J.L. Snell, Random Walks and Electric Networks, Carus Mathematical Monograph 22,
Mathematical Association of America, 1984.

Figure 3.1: Georg Ohm, Gustav Kirchhoff.

Before we start we recall three basic facts about electric networks:

(I) The rule for the composition of resistances is shown in in Fig. 3.2.

R1 R2
R = R1 +R2

Series Law

R1

R2

1
R = 1

R1
+ 1

R2

Parallel Law

Figure 3.2: The Series Law and the Parallel Law.

The inverse of resistance is called conductance. Thus, in series resistances add up, while in parallel
conductances add up. By iteration this leads to formulas for the composition of n ∈ N resistances:∑n

i=1 Ri for resistances in series and [
∑n

i=1(1/Ri )]−1 for resistances in parallel.

21
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(II) Ohm’s law says that

V = I ×R potential difference = current × resistance. (3.1)

(III) Kirchhoff ’s law says that the total current in and out of an isolated vertex is zero: current can only flow
in at a source vertex and flow out of a sink vertex (e.g. via a battery that is connected to the source vertex
and the sink vertex).

3.1 Finite networks

3.1.1 A linear network

The network we start with is a finite piece ofZ, say, the set of vertices V = {0,1, . . . , N −1, N }, N ∈N, with edges
between neighbouring vertices (see Fig. 3.3).

s s s s s s
0 1 2 N −2 N −1 N

Figure 3.3: A linear network.

Random Walk. Consider a simple random walk S = (Sn)n∈N0 on V , i.e., at x the walk has probability 1
2 to

jump to x −1 and probability 1
2 to jump to x +1, with the convention that a jump out of V is replaced by a

pause, i.e., P0(Sn+1 = 0 | Sn = 0) = 1
2 and PN (Sn+1 = N | Sn = N ) = 1

2 for all n ∈N0. Let

px = Px (τN < τ0), x ∈ V , (3.2)

where, as before, Px stands for the law of S given S0 = x, and

τy = inf{n ∈N0 : Sn = y} (3.3)

is the first hitting time of y ∈ V . (Note that τy differs from σy used in Chapter 1 in that it allows the hitting
time to be zero, i.e., τy = 0 when S0 = y .) The probability in (3.2) has the following properties:

p0 = 0, pN = 1, px = 1
2 px−1 + 1

2 px+1, x ∉ ∂V = {0, N }. (3.4)

The third line follows by recording the first step of S and using that S is a Markov process (see also (2.14))

px = Px (τN < τ0,S1 = x +1)+Px (τN < τ0,S1 = x −1)

= 1
2 Px (τN < τ0 | S1 = x +1)+ 1

2 Px (τN < τ0 | S1 = x −1)

= 1
2 Px+1(τN < τ0)+ 1

2 Px−1(τN < τ0)

= 1
2 px+1 + 1

2 px−1.

(3.5)

Lemma 3.1. (Recall Exercise 2.2.) The difference equation with boundary condition in (3.4) has a unique
solution.

Proof. We already know that there is a solution, namely, (3.2). Our task is to show that there is at most one
solution. The proof comes in two steps, which will be generalised later by the Maximum Principle (Lemma
3.2) and the Uniqueness Principle (Lemma 3.3).
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Step 1: Put M = maxx∈V px . Since p is bounded, the maximum is attained at some x0 ∈ V . Suppose that
x0 ∉ ∂V . Then, by the third equation of (3.4), we must have px0−1 = M and px0+1 = M . Iteration gives that
px = M for all x ∈ V , which contradicts the boundary condition. Hence x0 ∈ ∂V . The same argument shows
that also m = minx∈V px is attained at ∂V .

Step 2: Let p, p ′ be two solutions. Put q = p − p ′. This function has the properties q0 = qN = 0 and qx =
1
2 qx−1 + 1

2 qx+1. As shown in Step 1, the latter ensures that q attains both its maximum and its minimum at
∂V . The former ensures that both the maximum and the minimum are zero. Hence q ≡ 0 on V .

Electric Flow. Suppose that the edges in V are wires with an electric resistance of 1 Ohm (= unit resistance).
Place a 1-Volt battery across ∂V , fixing the potential at x = 0 to be 0 and the potential x = N to be 1. Let

vx = voltage at x, x ∈ V . (3.6)

By Ohm’s Law, the potential in (3.6) has the following properties:

v0 = 0, vN = 1, vx = 1
2 vx−1 + 1

2 vx+1, x ∉ ∂V = {0, N }. (3.7)

The third equation follows from Kirchhoff’s Law: the current into x, which is (vx − vx−1)+ (vx − vx+1), must
be equal to 0 when x ∉ ∂V . Now, (3.7) is the precise same equation as (3.4), and so by Lemma 3.1 we have

px = vx , x ∈ V . (3.8)

Thus, we see that there is a direct link between the Random-Walk-problem and the Electric-Flow-problem.
It is not hard to guess the solution of (3.4) and (3.7):

px = vx = x

N
, x ∈ V . (3.9)

Compare this formula and the following exercise with what was found in Section 1.3 for the ruin problem.

Exercise 3.1. Let mx = Ex (τ{0,N }) be the average number of steps until S hits the set {0, N } given S0 = x. (Here,
τ{0,N } = inf{n ∈N0 : Sn ∈ {0, N }} and Ex is expectation over S given S0 = x.) Write down a difference equation
with boundary condition for mx . Derive the solution for mx (similar as in Exercise 2.2).

3.1.2 A planar network

Take for V a finite piece of Z2, say, V = {0,1, . . . , N −1, N }2, N ∈N (see Fig. 3.4).

Random Walk. Consider a simple random walk S = (Sn)n∈N0 on V , i.e., at x the walk has probability 1
4 to

jump along one of the 4 edges going out of x, with the convention that a jump out of V is replaced by a pause.
Let

px = Px (τ(N ,N ) < τ(0,0)), x ∈ V . (3.10)

Then (3.4) becomes

p(0,0) = 0, p(N ,N ) = 1, px = 1
4

∑
y∼x

py , x ∉ {(0,0), (N , N )}, (3.11)

where y ∼ x means that y is a neighbour of x, with the convention that if y falls outside V , then y is replaced
by x. As in Lemma 3.1, this difference equation with boundary condition has a unique solution (see also the
uniqueness principle in Lemma 3.3 below).
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s s s s s s
s s s s s s

s s s s s s
s s s s s s

0 1 2 N −2 N −1 N
0

1

N −1

N

Figure 3.4: A planar network.

Electric Flow. Again, suppose that the edges are wires with an electric resistance of 1 Ohm. Place a 1-Volt
battery across {(0,0), (N , N )}, fixing the potential at x = (0,0) to be 0 and the potential x = (N , N ) to be 1. Then

v(0,0) = 0, v(N ,N ) = 1, vx = 1
4

∑
y∼x

vy , x ∉ {(0,0), (N , N )}, (3.12)

where the third line again follows from Kirchhoff’s Law: the current into x, which is
∑

y∼x (vx − vy ), must be
equal to 0 when x ∉ {(0,0), (N , N )}. Here the same convention is used: if y falls outside V , then y is replaced
by x. By the uniqueness of the solution we get the analogue of (3.8):

px = vx , x ∈ V . (3.13)

However, this time it is not easy to guess the explicit form of the solution.

Exercise 3.2. Check that p(x1,x2) = x1x2/N 2 is not a solution.

3.1.3 General networks

Definitions. We generalise the above two examples to an arbitrary finite network. We think of the network
as a graph G = (V ,E ), where V is a set of vertices and E ⊂ V ×V is a set of directed edges. An edge from x to y
is denoted by x y . We assume that

x y ∈ E ⇐⇒ y x ∈ E , (3.14)

i.e., each pair of sites is either not connected by an edge or is connected by two edges in opposite directions.
(Notationally it will be convenient not to use a single undirected edge.) With each edge x y ∈ E we associate a
conductance Cx y ∈ (0,∞) in such a way that

Cx y =Cy x ∀x y ∈ E . (3.15)

We assume that G is connected, and consider a Markov Chain S = (Sn)n∈N0 on G with transition matrix P =
(Px y )x,y∈V , i.e., Px y is the probability to go from x to y , given by

Px y =
Cx y

Cx
, Cx = ∑

y∼x
Cx y , x, y ∈ V , (3.16)
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where y ∼ x means that x y ∈ E , and Cx is the conductance out of x. For this choice, S has equilibrium
distribution

µx = Cx

C
, x ∈ V , (3.17)

where C =∑
x∈V Cx is the normalisation constant. Indeed, (3.16–3.17) imply that

µx Px y =µy Py x ∀x, y ∈ V , (3.18)

from which it follows that
∑

x∈V µx Px y =µy for all y ∈ V . In fact, (3.18) says that µ is the reversible equilibrium
of S. In physics terminology, the latter property is referred to as “detailed balance”: in equilibrium the prob-
ability that S moves from x to y is the same as the probability that S moves from y to x. Note that transitions
can only occur along the directed edges in G . Alternatively, we may put

Cx y = 0 ∀, x y ∉ E . (3.19)

Given C = (Cx y )x y∈E , the Laplacian ∆ associated with the Markov chain, acting on the set of functions
{ f : V →R}, is defined as

(∆ f )x = ∑
y∼x

Px y ( fy − fx ), x ∈ V . (3.20)

Pick a,b ∈ V , a 6= b. A function f is called harmonic on V \{a,b} when ∆ f ≡ 0 on V \{a,b}. The following two
lemmas generalise Steps 1 and 2 in the proof of Lemma 3.1.

Lemma 3.2 (Maximum Principle). Let f be a harmonic function on V \{a,b} with fa ≥ fb . Then f attains its
maximal value M at a and its minimal value m at b.

Lemma 3.3 (Uniqueness Principle). Let f , g be two harmonic functions on V \{a,b} such that f = g on {a,b}.
Then f = g on V .

Exercise 3.3. Give the proof of both lemmas.

Dirichlet problem. Again, think of edge x y as a wire with conductance Cx y . Pick a,b ∈ V , a 6= b, and place a
1-Volt battery across {a,b}, fixing the potential at x = b to be 0 and the potential at x = a to be 1 (see Fig. 3.5).
Let vx denote the potential at x, and ix y the current from x to y . Note that ix y =−i y x .

Figure 3.5: Example of an electric networks

By Ohm’s Law, we have 1

ix y = (vx − vy )Cx y = (vx − vy )
1

Rx y
, (3.21)

1Infinite resistance = zero conductance = no current. Zero resistance = infinite conductance = no potential difference.
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where Rx y = 1/Cx y is the resistance of with edge x y . (Note that the current flows in the direction where the
potential decreases.) Kirchhoff ’s Law requires that the total current flowing out of x ∈ V \{a,b} is 0, i.e.,∑

y∈V

ix y = 0, x ∈ V \{a,b}. (3.22)

Substitution of (3.21) into (3.22) gives

vxCx = ∑
y∈V

Cx y vy , x ∈ V \{a,b}, (3.23)

which in terms of the transition matrix reads

vx = ∑
y∈V

Px y vy , x ∈ V \{a,b}. (3.24)

Thus, recalling (3.20), we see that the voltage solves the so-called Dirichlet problem

va = 1, vb = 0, ∆v = 0 on V \{a,b}. (3.25)

Putting

px = Px (τa < τb), x ∈ V , (3.26)

as in (3.2), we see that also p solves the Dirichlet problem. This not only tells us that the solution of the
Dirichlet problem exists, via Lemmas 3.2–3.3 it also tells us that the solution is unique, and so we once again
have

px = vx ∀x ∈ V . (3.27)

Thus, the link between the Markov-Chain-problem and the Electric-Flow-problem is valid in full generality.

Exercise 3.4. Compute v for the planar network in Fig. 3.4 with N = 1 and N = 2 when all edges have unit
resistance (i.e., unit conductance). Recall that a = (N , N ) and b = (0,0). (Hint: Exploit symmetry to simplify
the computation.)

s s

ss a

b
s s

ss

s
s

s
s s

a

b

Figure 3.6: Two planar networks.

Exercise 3.5. Compute v for the planar networks in Fig. 3.6 with unit resistances. For the first network,
compute the effective resistance between a and b with the help of the Series Law and the Parallel Law (recall
Fig. 3.2). Can this be done for the second network too?

Note that (3.12) coincides with (3.25) when G is the planar network in Fig. 3.4, and a = (N , N ) and b =
(0,0).
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Effective resistance. The total current that flows through the network from a to b equals the current out of
a, ia =∑

y∈V iay , and also equals the current into b, −ib =∑
y∈V [−iby ] =∑

y∈V i yb . Indeed,∑
x,y∈V

ix y =− ∑
x,y∈V

i y x =⇒ 0 = ∑
x,y∈V

ix y =
∑
y∈V

iay +
∑
y∈V

iby = ia + ib . (3.28)

The battery effectively sees the network as a single edge connecting a and b through which the total current
flows (see Fig. 3.7). The effective resistance of the network between a and b therefore is equal to

Reff =
va − vb

ia
= 1

ia
=− 1

ib
= vb − va

ib
. (3.29)

Since p ≡ v by (3.27), we can use (3.16) and (3.20) to write

ia = ∑
y∈V

iay =
∑
y∈V

(va − vy )Cay =Ca
∑
y∈V

(va − vy )
Cay

Ca
=Ca

[
1− ∑

y∈V

Pay py

]
=Ca pesc

a (3.30)

with pesc
a = Pa(σb <σa), where we recall thatσx = inf{n ∈N : Sn = x} is the first hitting time of x ∈ V after time

0. The latter is the escape probability at a, i.e., the probability that the Markov chain starting at a reaches b
before returning to a. Hence (3.29) gives us the relation

Reff =
1

Ca pesc
a

. (3.31)

This shows yet another aspect of the general link between the Markov-Chain-problem and the Electric-Flow-
problem.

s

s

s

sa b

battery

network

Figure 3.7: Effective resistance between two vertices of a network.

Exercise 3.6. Interchange the role of a and b to deduce from (3.31) that Ca pesc
a =Cb pesc

b . Explain this simple
relation with the help of path reversal. Motivate all the details of the argument.

Energy dissipation. The energy dissipation along edge x y is the product of the current ix,y from x to y and
the voltage difference vx − vy . Writing Rx y = 1/Cx y for the resistance of edge x y , we see that the total energy
dissipation of the network equals

E = ∑
x y∈E

ix y (vx − vy ) = 1
2

∑
x,y∈V

ix y (vx − vy ) = 1
2

∑
x,y∈V

i 2
x y Rx y = 1

2

∑
x,y∈V

(vx − vy )2Cx y , (3.32)

where we use (3.21). Since ia is the total current from a to b and vb = 0, we have

E = ∑
x∈V

vx
∑
y∈V

ix y = ia va = i 2
aReff =

v2
a

Reff
. (3.33)

Since va = 1, this says that E is the reciprocal of the effective resistance.
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Definition 3.4. A flow j = ( jx y )x,y∈V from a to b on G is an assignment of real numbers jx y to all pairs x, y in
V such that:

(1) jx y =− jy x for all x, y ∈ V .

(2)
∑

y∈V jx y = 0 for all x ∈ V \{a,b}.

(3) jx y = 0 when x y ∉ E .

Think of j as a “permissible flow” through the network, not the actual flow. The flow out of a, ja =∑
y∈V jay ,

equals the flow into b, − jb =∑
y∈V [− jby ]. If ja =− jb = 1, then we say that j is a unit flow. The set of unit flows

is denoted by UF .

An important property of a flow is that the energy supplied by the battery must balance against the energy
dissipated by the network.

Lemma 3.5 (Conservation of Energy). For any w : V →R and any flow j from a to b,

(wa −wb) ja = 1
2

∑
x,y∈V

(wx −wy ) jx y . (3.34)

Proof. Write, using properties (1) and (2) in Definition 3.4,∑
x,y∈V

(wx −wy ) jx y =
∑

x∈V

wx
∑
y∈V

jx y −
∑
y∈V

wy
∑

x∈V

jx y

= wa
∑
y∈V

jay +wb

∑
y∈V

jby −wa
∑

x∈V

jxa −wb

∑
x∈V

jxb

= wa ja +wb jb −wa(− ja)−wb(− jb) = 2(wa −wb) ja ,

(3.35)

where the last line use that jb =− ja .

Variational principles. The total energy dissipation associated with j equals

Ê( j ) = 1
2

∑
x,y∈V

j 2
x y Rx y . (3.36)

The following theorem shows that E in (3.32–3.33) is the solution of a variational principle after a small but
crucial modification. In order to state this theorem properly, we must adjust the battery so that ia = 1 instead
of va = 1, i.e.,

• The voltage of the battery must be tuned in such a way that the flow i determined by Ohm’s Law becomes
a unit flow.

This can be done because any flow multiplied by any constant is again a flow.

Theorem 3.6 (Thomson Principle). Let i be the unit flow from a to b determined by Ohm’s Law. Then

Ê(i ) = min
j∈UF

Ê( j ) (3.37)

with the minimum uniquely attained at j = i .
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Figure 3.8: William Thomson, Gustav Dirichlet.

Proof. Fix j ∈ UF . Put δx y = jx y − ix y . Then δ is a flow from a to b with δa = ∑
y∈V δay = ja − ia = 1−1 = 0.

Write
Ê( j ) = 1

2

∑
x,y∈V

(ix y +δx y )2Rx y

= 1
2

∑
x,y∈V

i 2
x y Rx y + 1

2

∑
x,y∈V

2ix yδx y Rx y + 1
2

∑
x,y∈V

δ2
x y Rx y

= Ê(i )+ ∑
x,y∈V

(vx − vy )δx y + Ê(δ).

(3.38)

Picking w = v and j = δ in Lemma 3.5, we see that the middle term equals 2(va − vb)δa = 0, and so we have

Ê( j ) = Ê(i )+ Ê(δ). (3.39)

Since Ê(δ) ≥ 0 with equality if and only if δ≡ 0, we get the claim.

Thus, the true current through the network G is the one that minimises the total energy dissipation among all
currents with the same total flow.

There is a dual variational principle, which is of equal interest. Let UP be the set of unit potentials, i.e.,
u : V →Rwith ua = 1 and ub = 0. The total energy dissipation associated with u equals

E(u) = 1
2

∑
x,y∈V

(ux −uy )2

Rx y
. (3.40)

Theorem 3.7 (Dirichlet Principle). Let v be the unit potential determined by Kirchhoff ’s Law. Then

E(v) = min
u∈UP

E(u) (3.41)

with the minimum uniquely attained at u = v.

Exercise 3.7. Give the proof.

E(v) is the same as E in (3.32). When we adjust the battery from va = 1 to ia = 1, we also change the total
energy dissipation. Since E(v) corresponds to va = 1 and Ê(i ) corresponds to ia = 1, we see from (3.33) that

E(v) = 1

Reff
, Ê(i ) = Reff. (3.42)
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Combining Theorems 3.6–3.7 with (3.42), we get

max
u∈UP

1

E(u)
= Reff = min

j∈UF
Ê( j ). (3.43)

This formula shows that we can obtain upper and lower bounds on Reff by inserting test unit flows and test
unit potentials, and hence provides a powerful way to estimate effective resistances for networks that are so
complex that an exact computation is not feasible.

Exercise 3.8. With the help of (3.43) it is possible to estimate the effective resistance of the planar network in
Fig. 3.4 when each edge has unit resistance. As a test unit potential, take u(x1,x2) = x1x2/N 2, 0 ≤ x1, x2 ≤ N , and
compute E(u) (recall Exercise 3.2). As a test unit flow, normalise the flow given in Figure 3.9, and compute
Ê( j ). Explain why this is indeed a flow. Hint: Use that

∑N
k=1 k2 = 1

6 N (N +1)(2N +1).
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Figure 3.9: The test flow j .

Rayleigh Monotonicity Law. The following result is physically obvious but mathematically non-trival.

Theorem 3.8 (Rayleigh Monotonicity Law). If the resistances of a network are increased (decreased), then the
effective resistance between any pair of points increases (decreases).

Proof. Consider two copies of the network, one with resistances R = (Rx y )x y∈E and one with resistances R′ =
(R ′

x y )x y∈E , such that R ′
x y ≥ Rx y for all x y ∈ E . Let i be the unit flow from a to b in the copy with resistances R

and j the unit flow from a to b in the copy with resistances R′. Then, by (3.36) and (3.42),

R ′
eff = ÊR′( j ) = 1

2

∑
x,y∈V

j 2
x y R ′

x y ≥ 1
2

∑
x,y∈V

j 2
x y Rx y = ÊR( j ). (3.44)

By the Thomson Principle we have ÊR( j ) ≥ ÊR(i ) = Reff, which proves the increasing part of the claim. The
decreasing part of the claim follows the same argument.
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Note that the monotonicity in Theorem 3.8 is not automatically strict: the effective resistance of the network
strictly increases when the resistance of single wire strictly increases only when there is a non-zero current
through that wire. For most networks all wires have a non-zero current, but not all.

Returning to (3.31), Theorem 3.8 has the following interpretation in terms of the Markov Chain:

• If the conductances of a network are increased (decreased), then the escape probability between any pair
of points increases (decreases).

In this form the monotonicity property is far from obvious. Indeed, by increasing the conductance of the
edges x y, y x ∈ E , we increase both Px y and Py x , but at the same time we decrease Pxz , z 6= y , and Py z , z 6= x
(recall (3.16)). Apparently, the combined effect is that it is easier to escape from a to b. Doyle and Snell offer
a nice probabilistic explanation (see Section 4.2 of their book).

3.2 Infinite networks

The theory that was built up in Section 3.1 applies to finite networks. For infinite networks we need to be more
careful, namely, the quantities we work with are not necessarily well-defined, e.g. the total energy dissipation.
In this section we show that it is possible to describe electric flows on infinite networks and that such flows
have interesting properties. For random walks it was already shown in Chapter 2 that there is no problem to
deal with infinite lattices like Zd , d ∈N. Our focus will be on such lattices as well.

Effective resistance. Nothing in Section 3.1 prevents us from replacing a and b by disjoint non-empty sub-
sets of V , say, A and B. All we have to do is impose the boundary condition v ≡ 1 on A and v ≡ 0 on B, which
amounts to connecting all the vertices in A and all the vertices in B by wires with infinite conductance (or
zero resistance). After that the same formulas can be used when we treat A and B as single vertices.

Armed with this idea, we consider the infinite network

Gd = (Zd ,Zd
∗), d ∈N, (3.45)

where Zd∗ denotes the set of edges between neighbouring vertices of Zd . Each edge represents a wire with
resistance 1 Ohm. We fix an N ∈N, look at the finite block BN = {−N , . . . , N }d ⊂Zd , and pick A = {0} and B =
∂BN = BN \BN−1. According to (3.31), the effective resistance Reff(0,∂BN ) between 0 and ∂BN (see Fig. 3.10),
which we abbreviate as RN (Gd ), equals

RN (Gd ) = 1

C0pesc
0 (0,∂BN )

, (3.46)

where C0 = 2d and pesc
0 (0,∂BN ) is the probability that a simple random walk on Zd starting at 0 hits ∂BN

before returning to 0. By the Rayleigh Monotonicity Law, N 7→ RN (Gd ) is non-decreasing. Therefore

R∞(Gd ) = lim
N→∞

RN (Gd ) exists. (3.47)

What can we say about R∞(Gd )?
We may think of R∞(Gd ) as the effective resistance of Gd between 0 and infinity. Now,

pesc(d) = lim
N→∞

pesc
0 (0,∂BN ) = lim

N→∞
P0(σ∂BN <σ0) = P0(σ0 =∞) = P0(Sn 6= 0 ∀n ∈N) (3.48)

is the escape probability from 0 of simple random walk on Zd . As shown in Chapter 2, we have

pesc(d)

 = 0, for d = 1,2,

> 0, for d ≥ 3.
(3.49)
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Therefore we find that

R∞(Gd ) = 1

2d pesc(d)

 =∞, for d = 1,2,

<∞, for d ≥ 3.
(3.50)

Thus, if we connect our 1-volt battery to any vertex of Gd and imagine that infinity has potential 0, then
no current will flow when d = 1,2, while a positive current will flow when d ≥ 3. Interestingly, networks on
which simple random walk is recurrent have infinite resistance, while networks on which simple random walk
is transient have finite resistance.

Exercise 3.9. Show that d 7→ R∞(Gd ) is non-increasing. (Hint: Rayleigh monotonicity law.)

0s

Figure 3.10: The layers ∂BM for M = 1,2,3. In G2, all edges have resistance 1. In G ′
2, only the thin edges have resistance

1, while the thick edges have resistance 0. All the vertices connected by the thick edges have the same potential and
therefore can be thought of as being merged into a single vertex.

Short-cut method. Can we verify (3.50) by direct computation? By the series and parallel law for resistances
it is clear that RN (G1) = (N−1+N−1)−1 = 1

2 N , and so the fact that R∞(G1) =∞ is trivial. With the help of (3.43)
it is possible to show that RN (G2) ≥ 1

8 log(2N +1). This provides an alternative route to R∞(G2) =∞ and goes
as follows.

For each M ∈N, replace all the wires between the vertices in ∂BM by wires with resistance 0. We then get
a new network, say G ′

2, in which only the edges between ∂BM−1 and ∂BM have resistance 1 (see Fig. 3.10).
Moreover, by the Rayleigh Monotonicity Law, we have

RN (G2) ≥ RN (G ′
2), N ∈N. (3.51)

When we connect our 1-Volt battery to 0 in G ′
2, the resulting potential is constant on each ∂BM (because

the edges in ∂BM have resistance 0). The computation of RN (G ′
2) therefore reduces to finding the effective

resistance of the linear network in Fig. 3.3 in which the edge between M−1 and M has conductance |∂BM−1|+
4, where the extra 4 comes from the fact that each of the 4 corner vertices of ∂BM−1 has 2 edges towards ∂BM

rather than 1. Since |∂BM−1| = 8(M −1), we find

RN (G ′
2) =

N∑
M=1

1

8(M −1)+4
≥

∫ N

0

dm

8m +4
= 1

8
log

(
8N +4

4

)
= 1

8
log(2N +1), (3.52)

which proves the claim.

Exercise 3.10. Compute the effective resistance of the rooted binary tree in Fig. 3.11 when the edges have
unit resistance. Hint: Use symmetry to reduce the problem to the computation of the effective resistance of
a linear network.
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s
s

s

s
s
s
s

Figure 3.11: Two generations of the rooted binary tree.

Embedding method. In the previous paragraph we used that the resistance decreases when wires are re-
placed by perfect conductors, which led to a lower bound on the effective resistance. We can take the opposite
route and use that the resistance increases when wires are replaced by perfect insulators, which leads to an
upper bound on the effective resistance. In what follows we will show that R∞(G3) ≤ 1 by removing edges
from G3 until we are left with a tree-like network for which the effective resistance can be computed by hand.

The idea is to build a tree inside the positive octant of G3 as follows. Let Pn = {(x, y, z) ∈ N3
0 : x + y +

z = 2n − 1}, n ∈ N0. We place the root of the tree at the origin P0 = {(0,0,0)}. Next, we pick the three rays
emanating from the origin in the three positive directions, and we add all the edges and the vertices on these
rays until they hit P1. When a ray hits P1, it splits into three further rays, again emanating in the three positive
directions, and we add all the edges and the vertices on these rays until P2 is hit. After that a further splitting
into three rays occurs, etc.

Figure 3.12: Picture of G̃3.

Let us call the resulting infinite network G̃3 (see Fig. 3.12). All the wires in G̃3 have resistance 1, and since
G̃3 ⊂G3 the Rayleigh Monotonicity Law gives 2

R∞(G3) ≤ R∞(G̃3). (3.53)

2The Rayleigh Monotonicity Law was derived for finite networks, but carries over to infinite networks via a straightforward limiting
argument.
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Now, we can lift G̃3 out of G3 and draw it as a tree T̃3 in the plane. In doing so, we separate vertices where rays
intersect (we make multiple vertices with zero resitances between the edges between them), which coincide
in G̃3 but do not coincide in T̃3. This does not affect the effective resistance:

R∞(G̃3) = R∞(T̃3). (3.54)

Let T3 be the tree T̃3 where we erase the edges (of zero resistance) between the separated vertices (as though
we put infinite resistance on these edges). Then

R∞(T̃3) ≤ R∞(T3). (3.55)

Exercise 3.11. Draw pictures of G̃2 and T̃2, i.e., let Pn = {(x, y) ∈N2
0 : x+ y = 2n −1}, n ∈N0, pick the two rays

emanating from the origin Pn = {(0,0)} in the two positive directions, etc.

The effective resistance of T3 can be easily computed. There are 3n vertices at distance 2n −1 from the
root. Each of these vertices is connected to 3 vertices at distance 2n+1 −1 from the root. All the vertices at the
same distance from the root have the same potential. Hence R∞(T3) is the same as the effective resistance of
the linear network with verticesN0 such that the conductance between vertex n and vertex n +1 is

3n+1

(2n+1 −1)− (2n −1)
= 3

(
3

2

)n

. (3.56)

1

1

1
1 1 1 1

1

1
2

1
4

3 ∗ 1 9 ∗ 1
2 27 ∗ 1

4

Figure 3.13: T3 and the corresponding linear network with conductances between vertices.

Hence

R∞(T3) = 1

3

∑
n∈N0

(
2

3

)n

= 1, (3.57)

which proves the claim.
The bound R∞(G3) ≤ R∞(G̃3) ≤ 1 implies that pesc(3) ≥ 1

6 (recall (3.50)).
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Exercise 3.12. Improve the lower bound to pesc(3) ≥ 1
3 by adding a mirror image of the embedded tree in the

negative octant.

The improved lower bound in Exercise 3.12 turns out to be quite reasonable: exact computations show that
in fact pesc(3) ≈ 0.66 ≈ 2

3 .
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Chapter 4

Self-Avoiding Walks and Configurations of
Polymer Chains

In this chapter we describe self-avoiding walks, i.e., lattice paths that do not intersect themselves. We borrow
from F. Caravenna, F. den Hollander and N. Pétrélis, Lectures on Random Polymers and R. Bauerschmidt,
H. Duminil-Copin, J. Goodman and G. Slade, Lectures on Self-Avoiding Walks, both of which appeared in:
Probability and Statistical Physics in Two and More Dimensions, Clay Mathematics Proceedings 15, American
Mathematical Society, Providence, RI, USA, 2012, pp. 319–393 and 395–467. In Section 4.1 we count how many
self-avoiding walks of a given length there are on Zd . In Section 4.2 we look at the spatial scaling properties
of a random self-avoiding walk.

Self-avoiding walks are models for polymer chains. A polymer is a large molecule consisting of monomers
that are tied together by chemical bonds. The monomers can be either small units (such as CH2 in polyethy-
lene) or larger units with an internal structure (such as the adenine-thymine and cytosine-guanine base pairs
in the DNA double helix). Because two monomers cannot occupy the same space, the polymer chain cannot
intersect itself. Paul Flory (1974 Nobel Prize in Chemistry) was the first to use self-avoiding walks to analyse
the configurational properties of polymer chains. John Hammersley was the first to develop a mathematical
theory of self-avoiding walks (see Fig. 4.1).

Polymers occur everywhere in nature because of the multivalency of atoms like carbon, oxygen, nitrogen
and sulfur, which are capable of forming long concatenated structures. The chemical bonds in a polymer
are flexible, so that the polymer can arrange itself in many different shapes. The longer the chain, the more
involved these shapes tend to be. For instance, the polymer may wind around itself to form a knot.

Figure 4.1: Paul Flory and John Hammersley.

37
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4.1 Counting self-avoiding walks

A self-avoiding walk (SAW) is a lattice path that does not self-intersect itself. On Zd , for n ∈N0 an n-step SAW
is an element of the path space (‖ ·‖ is the lattice norm)

W 6=
n =

{
w = (wi )n

i=0 ∈ (Zd )n+1 : w0 = 0, ‖wi+1 −wi‖ = 1 ∀0 ≤ i < n, wi 6= w j ∀0 ≤ i < j ≤ n
}

. (4.1)

In this section we look at the problem of counting the number of n-step SAWs, i.e., cn = |W 6=
n |. This is a hard

combinatorial problem, with a history of at least 60 years.

Exercise 4.1. An easy computation shows that c0 = 1, c1 = 2d , c2 = 2d(2d −1) and c3 = 2d(2d −1)2. Compute
c4 and c5.

Exact enumeration. For d = 1 the problem is trivial: c0 = 1 and cn = 2, n ∈N. For d ≥ 2, however, no closed
form expression is known for cn . Exact enumeration methods allow for the computation of cn up to moderate
values of n. The current record is: n = 71 for d = 2, n = 36 for d = 3, n = 24 for d ≥ 4. Larger n can be handled
either via numerical simulation (presently up to n = 225 ≈ 3.3×107 in d = 3) or with the help of extrapolation
techniques.

On the homepage of Iwan Jensen (Melbourne) [http://www.ms.unimelb.edu.au/∼iwan/] exact enumer-
ations of SAWs for d = 2 up to n = 71 can be found. The first 15 entries read:

0 1
1 4
2 12
3 36
4 100
5 284
6 780
7 2172
8 5916
9 16268
10 44100
11 120292
12 324932
13 881500
14 2374444
15 6416596

Exercise 4.2. What is cn , n ∈N0, for the binary tree in Fig. 3.11? (The root of the tree is the origin.)

Asymptotics. What can we say about cn for n →∞? We begin with the observation that n 7→ cn is submulti-
plicative:

cm+n ≤ cmcn , m,n ∈N0. (4.2)

The reason is that when we concatenate an m-step SAW and n-step SAW, we get an (m +n)-step path that
may or may not be self-avoiding. Taking logarithms, we see that n 7→ logcn is subadditive:

logcm+n ≤ logcm + logcn , m,n ∈N0. (4.3)

Since also cn ≥ 1, Fekete’s Lemma 4.1 implies that the sequence ( 1
n logcn)n∈N converges in R and

lim
n→∞

1

n
logcn = inf

n∈N
1

n
logcn . (4.4)
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Lemma 4.1 (Fekete’s Lemma). Let (an)n∈N be a subadditive sequence in R for which infn∈N an
n exists in R. Then

the sequence ( an
n )n∈N converges and limn→∞ an

n = infn∈N an
n .

Exercise 4.3. Give the proof of Lemma 4.1.

The quantity (which exists by (4.4))
µ= lim

n→∞(cn)1/n (4.5)

is called the connective constant and depends on the dimension of the lattice: µ = µ(d) (the limit in (4.4)
equals logµ(d)). Since

d n ≤ cn ≤ 2d(2d −1)n−1, n ∈N, (4.6)

we have µ(d) ∈ [d ,2d − 1]. For d = 1 this yields the value µ(1) = 1, but for d ≥ 2 it only provides bounds.
Numerical simulation leads to the estimate

µ(2) = 2.63815853031. . . , (4.7)

but no exact value is known for µ(2). Similar estimates have been obtained for µ(d), d ≥ 3, but with less
accuracy. It is known that µ(d) has an asymptotic expansion in powers of 1/2d , namely,

µ(d) = 2d − ∑
k∈N0

ak

(2d)k
(4.8)

with ak integer coefficients. Up to now 13 coefficients have been identified, e.g. a0 = 1, a1 = 1, a2 = 3, a3 = 16,
a4 = 102. The ak ’s appear to grow so rapidly with k in absolute value that the expansion in (4.8) is believed
to be non-summable, i.e., its radius of convergence is believed to be zero. Moreover, for large values of k the
signs of ak appear to change in an irregular manner.

The series in (4.8) is believed to be Borel summable. Try to find out what Borel summability is.
The connective constant only gives the rough asymptotics for the growth of cn , namely,

cn =µn+o(n), n →∞, (4.9)

where o(n) means any function of n that grows slower than n. It is predicted that

cn ∼
 Aµn nγ−1, d 6= 4,

Aµn(logn)1/4, d = 4,
n →∞, (4.10)

with A an amplitude and γ an exponent. The value of γ is predicted to be

γ= 1 (d = 1), 43
32 (d = 2), 1.16. . . (d = 3), 1 (d ≥ 5). (4.11)

For d ≥ 5 a proof of (4.10–4.11) has been given with the help of a combinatorial expansion technique called
the lace expansion. For d = 2,3,4 the claim is open.

Exercise 4.4. (1) Consider two independent simple random walks S and S̄ on Zd , both starting at 0. Let
I =∑

i , j∈N0
1{Si=S̄ j } denote their total intersection local time. In this exercise we show that E(I ) <∞ if and only

if d ≥ 5. This will be done with the use of the following

E(I ) = ∑
i , j∈N0

P (Si = S̄ j ) = ∑
x∈Zd

∑
i , j∈N0

P (Si = S̄ j = x)

= ∑
x∈Zd

∑
i , j∈N0

P (Si = x)P (S̄ j = x) = ∑
x∈Zd

G(x;1)2,
(4.12)
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where G(x;1) =∑
i∈N0

P (Si = x) denotes the Green function at x. We know that G(x;1) =∞ for all x ∈Zd when
d = 1,2 (because SRW is recurrent), while for d ≥ 3 we found with the help of the Fourier analysis explained
in Section 2.5.2 that

G(x;1) ³ ‖x‖−(d−2), ‖x‖→∞. (4.13)

Here f (x) ³ h(x), ‖x‖→∞ means that there exists α,β> 0 and K > 0 such that

α|h(x)| ≤ | f (x)| ≤β|h(x)| for all x ∈Zd with ‖x‖ > K . (4.14)

Prove (1) using the following steps:
(a) Conclude from (4.12) that E(I ) =∞ if and only if∑

x∈Zd \{0}

‖x‖−2(d−2) =∞.

(b) Show that ‖x‖∞ ≤ ‖x‖ ≤ p
d‖x‖∞ for all x ∈ Zd , where ‖x‖∞ = maxi∈{1,...,d} |xi |. Conclude from this that

E(I ) =∞ if and only if ∑
x∈Zd \{0}

‖x‖−2(d−2)
∞ =∞.

(c) Show that ∑
x∈Zd \{0}

‖x‖−2(d−2)
∞ = ∑

n∈N

(
(2n +1)d − (2n −1)d

)
n−2(d−2).

(Hint: Compute #{x ∈Zd : ‖x‖∞ ≤ n}.)
(d) Use the Binomium of Newton on (2n + 1)d and (2n − 1)d to conclude that there exists a ad−1 > 0 and
ad−2, ad−3, . . . , a0 ≥ 0 for which∑

x∈Zd \{0}

‖x‖−2(d−2)
∞ = ad−1

∑
n∈N

nd−1n−2(d−2)

+ad−2

∑
n∈N

nd−2n−2(d−2) +·· ·a1
∑

n∈N
n1n−2(d−2) +a0

∑
n∈N

n−2(d−2)..

(e) Show that
∑

n∈Nnd−1n−2(d−2) <∞ if and only if d ≥ 5 and conclude that E(I ) <∞ if and only if d ≥ 5.
(2) Bonus: Why does the result in (1) provide intuitive support for the fact that there is a crossover at d = 4 in
(4.10)?

What the crossover at d = 4 shows is that in low dimension the effect of the self-avoidance constraint in
SAW is long-ranged, whereas in high dimension it is short-ranged. Phrased differently, since SRW in dimen-
sion d ≥ 2 has “Hausdorff dimension 2”, it tends to intersect itself frequently for d < 4 and not so frequently
for d > 4. Consequently, the self-avoidance constraint in SAW changes the qualitative behaviour of the path
for d < 4 but not for d > 4.

4.2 Spatial extension of a random self-avoiding walk

What can we say about the spatial extension of a self-avoiding walk that is drawn randomly from W 6=
n ? In order

to better appreciate the effect of the self-avoidence restriction (which in physics terminology is referred to as
“excluded-volume", i.e., no two monomers in the polymer chain can occupy the same space), we recall a few
facts about simple random walk that were already mentioned in Chapter 1. Simple random walk models a
polymer without excluded volume.
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4.2.1 Simple random walk

SRW has path space

Wn =
{

w = (wi )n
i=0 ∈ (Zd )n+1 : w0 = 0, ‖wi+1 −wi‖ = 1 ∀0 ≤ i < n

}
. (4.15)

The law Pn of SRW up to time n is the uniform distribution on Wn (recall (2.3)). Counting is easy: |Wn | = (2d)n .

Figure 4.2: Simulation of SRW on Z2 with n = 103, 104 and 105 steps. The circles have radius n1/2 in units of
the step size.

Let Sn be the random variable whose law is that of the end-point wn under Pn , i.e., Sn is the position of
SRW at time n. A distinctive feature of SRW is that it exhibits diffusive behavior, i.e.,

En(Sn) = 0 and En(‖Sn‖2) = n ∀n ∈N0 (4.16)

as shown in Claim 1.2 for d = 1, and(
1

n1/2
Sbntc

)
0≤t≤1

=⇒ (Bt )0≤t≤1, n →∞, (4.17)

where the right-hand side is Brownian motion on Rd (the definition of Brownian motion or Wiener process
for higher dimensions will be introduced in Section 6.7) , and =⇒ denotes convergence in distribution on the
space of càdlàg paths endowed with the Skorohod topology (see Fig. 4.2).

4.2.2 Self-avoiding walk

A random SAW is described by the uniform distribution P 6=
n on W 6=

n in (4.1), i.e., P 6=
n (w) = 1/|W 6=

n | for all w ∈W 6=
n .

Let Sn be the random variable whose law (= probability distribution) is that of the end-point wn under P 6=
n .

Exercise 4.5. The evolutions in time of SRW and SAW have different characteristics.
(1) Show that (Pn)n∈N is a consistent family, i.e., for every n ∈ N0 under the law Pn+1 the first n steps of the
path have law Pn (i.e. the events of the form {S1 = s1, . . . ,Sn = sn} has te same probability under Pn+1 as under
Pn).
(2) Show that (P 6=

n )n∈N is not a consistent family. Hint: Find a path in W 6=
n that cannot be extended to a path in

W 6=
n+1.

The consistence property in (1) is the same as the compatibility condition in (2.6). What (2) says is that SAW
cannot be seen as an "evolving random process”. In other words, there is no definition of an infinite SAW (at
least not in a straightforward sense).
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Figure 4.3: Simulation of SAW on Z2 with n = 102, 103 and 104 steps. The circles have radius n3/4 in units of
the step size.

The mean-square displacement is predicted to scale like

E 6=
n (‖Sn‖2) ∼


D n2ν, d 6= 4,

D n(logn)
1
4 , d = 4,

n →∞, (4.18)

with D a diffusion constant and ν an exponent. The value of ν is predicted to be

ν= 1 (d = 1), 3
4 (d = 2), 0.588. . . (d = 3), 1

2 (d ≥ 5). (4.19)

What (4.18–4.19) say is that

• SAW is ballistic in d = 1, subballistic and superdiffusive in d = 2,3,4, and diffusive in d ≥ 5

(ballistic means Sn ³ n, diffusive means Sn ³p
n). For d ≥ 5 a proof has been given via the lace expansion.

For d = 2,3,4 the claim is open. Iwan Jensen’s homepage lists En(‖Sn‖2) for d = 2 up to n = 59.
For d ≥ 5, SAW scales to Brownian motion:(

1

Dn1/2
Sbntc

)
0≤t≤1

=⇒ (Bt )0≤t≤1, n →∞. (4.20)

In physics terminology this is expressed by saying that:

• For d ≥ 5, SAW is in the same universality class as SRW.

For d = 2 the scaling limit is predicted to be SLE8/3, the so-called Schramm Loewner Evolution with pa-
rameter 8/3 (see Fig. 4.3). This is part of an elaborate theory describing two-dimensional random paths with
self-interaction.



Chapter 5

Random Walks and Adsorption of Polymer
Chains

A polymer is a large molecule consisting of monomers that are tied together by chemical bonds. In Chap-
ter 4 we looked at the effect of excluded volume, i.e., two monomers cannot occupy the same space. In the
present chapter we study a polymer in the vicinity of a linear substrate. Each monomer that touches the sub-
strate feels a binding energy, resulting in an attractive or a repulsive interaction between the polymer and the
substrate (depending on whether the binding energy is positive or negative). We will consider two situations:

(1) Section 5.1: the substrate is penetrable (“pinning”).

(2) Section 5.2: the substrate is impenetrable (“wetting”).

We will show that, in the limit as the length of the polymer tends to infinity, as the binding energy is varied
there is a crossover between a localized phase where the polymer stays close to the substrate and a delocal-
ized phase where it wanders away from the substrate (see Fig. 5.2). This crossover is referred to as a phase
transition. Michel Fisher (see Fig. 5.1) was the first to study this phase transition in detail.

Figure 5.1: Michael Fisher.

In Section 5.3 we show that the wetting situation can be used to describe the denaturation transition of
DNA. Other applications, not discussed here, include the study of chemical surfactants, i.e., chemical mate-
rials that coat a surface (like paint).

For background see: G. Giacomin,Random Polymer Models, Imperial College Press, London, 2007 and F.
den Hollander, Random Polymers, Lecture Notes in Mathematics 1974, Springer, 2009.

43
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Localized Delocalized

Figure 5.2: Typical paths in the localized phase and the delocalized phase in the wetting situation.

5.1 Pinning

Definitions. Let

Wn =
{

w = (i , wi )n
i=0 : w0 = 0, wi+1 −wi ∈ {−1,+1} ∀0 ≤ i < n

}
(5.1)

denote the set of n-step directed paths starting at the origin. Here, steps move up-right (↗) or down-right
(↘). For w ∈Wn , let

Kn(w) =
n∑

i=1
1{wi=0}, (5.2)

be the number of times w hits the origin (where the visit at time i = 0 is not counted). Fix ζ ∈ R and define a
path measure on Wn by putting

P̄ζ
n(w) = 1

Z ζ
n

eζKn (w) P̄n(w), w ∈Wn . (5.3)

Here, P̄n is the projection onto Wn of the path measure P̄ of a directed SRW (i.e., under P̄ the vertical incre-
ments wi+1−wi , i ∈N0, are i.i.d. and take values ±1 with probability 1

2 each, just like SRW), ζ is the interaction

strength, and Z ζ
n is the normalisation constant

Z ζ
n = ∑

w∈Wn

eζKn (w) P̄n(w). (5.4)

Note that |Wn | = 2n and that P̄n is the uniform distribution on Wn . In physics terminology, P̄ζ
n in (5.3) is called

the Gibbs measure of the polymer, Z ζ
n is called the partition sum, and ζ is “the binding energy divided by

the Boltzmann constant times the absolute temperature”. The Gibbs measure P̄ζ
n models a two-dimensional

directed polymer inN0×Zwhere each visit to the substrateN×{0} carries a weight eζ, which is a reward when
ζ> 0 and a penalty when ζ< 0 (see Fig. 5.3).

s
s

s
s

s
s

s
s

N× {0}
(0,0)

Figure 5.3: A 7-step path inN0 ×Z that makes 2 visits toN× {0}.



5.1. PINNING 45

Let S = (Si )i∈N0 denote SRW starting from S0 = 0. Write P to denote the law of S. Letσ= inf{n ∈N : Sn = 0}
denote the first return time to 0. For k ∈N, define

a(k) = P (σ> k), b(k) = P (σ= k), k ∈N0. (5.5)

Note that a(0) = 1, b(0) = 0 and that the support of b is 2N, because SRW can only return to the origin after an
even number of steps. Since b(k) = a(k−1)−a(k), k ∈N, this implies that a(k−1) = a(k), k ∈N odd. We know
from (1.10), Corollary 1.14 and Exercise 1.2 that

a(2k) ∼ 1p
πk

, b(2k) ∼ 1

2k
p
πk

, k →∞. (5.6)

(See also F. Spitzer, Principles of Random Walk, 2nd. ed., Springer, 1976.)

Free energy. The free energy of the polymer is defined as

f (ζ) = lim
n→∞

1

n
log Z ζ

n . (5.7)

In Theorem 5.1 below we will show that the limit exists in R. Before doing so, we explain why the function
ζ 7→ f (ζ) is important.

Exercise 5.1. Let fn(ζ) = 1
n log Z ζ

n , ζ ∈R, n ∈N.
(1) Show that fn is convex for every n ∈N, i.e., fn(λζ′+ (1−λ)ζ′′) ≤ λ fn(ζ′)+ (1−λ) fn(ζ′′) for all ζ′,ζ′′ ∈ R and
λ ∈ [0,1]. Hint: Use the Hölder inequality, which says that

n∑
i=1

g (i )h(i )pi ≤
(

n∑
i=1

g (i )p pi

) 1
p
(

n∑
i=1

g (i )q pi

) 1
q

(5.8)

for all g ,h : {1, . . . ,n} → [0,∞) and all p1, . . . , pn ∈ [0,1] such that
∑n

i=1 pi = 1, where p, q > 0 satisfy the equation
1
p + 1

q = 1. Check that the conditions for (5.8) are satisfied.
(2) Show that if f = limn→∞ fn exists, then also f is convex.

An important consequence of (1) and (2), not proved here, is that f ′(ζ) = limn→∞ f ′
n(ζ) whenever f ′(ζ)

exists. By (5.3–5.4), we have

f ′
n(ζ) =

[
1

n
log Zn(ζ)

]′
= 1

n

∑
w∈Wn

[Kn(w)] P̄ζ
n(w) = 1

n
E P̄ζ

n (Kn). (5.9)

What this says is that f ′
n(ζ) is the average fraction of adsorbed monomers under the law P̄ζ

n of the pinned
polymer. Letting n → ∞ in (5.9), we find that f ′(ζ) is the limiting average fraction of adsorbed monomers
whenever f ′(ζ) exists. Consequently, at those values of ζ where the free energy fails to be differentiable this
fraction is discontinuous, signalling the occurrence of what is called a phase transition, i.e., a drastic change
in the behaviour of the typical path under the Gibbs measure. See Figs. 5.8–5.9 below for an illustration.

A similar computation as in (5.9) shows that

f ′′
n (ζ) = 1

n
VarP̄ζ

n (Kn), (5.10)

i.e., f ′′
n (ζ) is the variance of Kn/

p
n under the law P̄ζ

n of the pinned polymer. Thus, also the higher derivatives
of the free energy have an interpretation (as long as they exist and are equal to the limit of the derivatives for
finite n as n →∞, which is often the case).
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Phase transition. Our first theorem settles the existence of the free energy.

Theorem 5.1. f (ζ) exist for all ζ ∈R and is non-negative.

Proof. As Z ζ
n = Z ζ

n+1 for even n, i.e., n ∈ 2N, it is sufficient to show that limn→∞,n∈2N
1
n log Z ζ

n exists. Let (E
denotes expectation w.r.t. SRW, i.e., with respect to P̄n)

Z ζ,0
n = E

(
exp

[
ζ

n∑
i=1

1{Si=0}

]
1{Sn=0}

)
, n ∈ 2N, (5.11)

be the partition sum for the polymer constrained to end at the substrate. We begin by showing that there exists
a 0 <C <∞ such that

Z ζ,0
n ≤ Z ζ

n ≤ (1+C n)Z ζ,0
n ∀n ∈ 2N. (5.12)

The lower bound is obvious. The upper bound is proved as follows. By splitting the expectation in (5.11)
according to the last hitting time of 0 prior to time n, we may write (see Fig. 5.4)

Z ζ
n = Z ζ,0

n +
n∑

k=1
k∈2N

Z ζ,0
n−k a(k) = Z ζ,0

n +
n∑

k=1
k∈2N

Z ζ,0
n−k b(k)

a(k)

b(k)
. (5.13)

By (5.6) we know that a(k)/b(k) ≤ C k for all k ∈ 2N and some 0 < C < ∞. However, without the factor
a(k)/b(k), the last sum in (5.13) is precisely Z ζ,0

n , and so we get the upper bound in (5.12).

s s s
s

0 n −k n
Figure 5.4: Illustration of (5.13).

To prove the existence of the free energy, note that (see Fig. 5.5)

Z ζ,0
m+n ≥ Z ζ,0

m Z ζ,0
n ∀m,n ∈ 2N, (5.14)

which follows by inserting an extra indicator 1{Sm=0} into (5.11) and using the Markov property of S at time m.

This inequality says that n 7→ n f 0
n with f 0

n (ζ) = 1
n log Z ζ,0

n is superadditive. This implies (see Exercise 5.2) the
existence of

f 0(ζ) = lim
n→∞
n∈2N

f 0
n (ζ). (5.15)

But f 0 = f because of (5.12), and so f exists.

s s s
0 m m +n

Figure 5.5: Illustration of (5.14).

Finally, Z ζ
n ≥ E(exp[ζKn]1{σ>n}) = a(n) implies that f (ζ) ≥ 0 because limn→∞ 1

n log a(n) = 0.
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0 1
z

B(z) ∞

s
c

Figure 5.6: Qualitative picture of z 7→ B(z).

Exercise 5.2. Use Fekete’s Lemma 4.1 to show that (5.14) implies existence of the limit in (5.15) with f 0(ζ) =
supn∈2N f 0

n (ζ). Do not forget to show that the conditions for the application of the lemma are satisfied.

Our second theorem relates the free energy to the generating function for the length of the excursions
away from the interface. Let (see Fig. 5.6)

B(z) = ∑
k∈N

zk b(k), z ∈ [0,∞). (5.16)

Note that B(z) is the same as F (0; z) in Section 2.5.1.

Theorem 5.2. The free energy is given by

f (ζ) =
 0, if ζ≤ 0,

r (ζ), if ζ> 0,
(5.17)

where r (ζ) is the unique solution of the equation

B(e−r ) = e−ζ, ζ> 0. (5.18)

Proof. For ζ≤ 0, we have the trivial bounds

a(n) ≤ Z ζ
n ≤ 1 ∀n ∈N, (5.19)

which imply that f (ζ) = 0. For ζ> 0, we look at the constrained partition sum Z ζ,0
n and write this out as follows

(see Fig. 5.7)

Z ζ,0
n =

n∑
m=1

∑
j1,..., jm∈N

j1+···+ jm=n

m∏
i=1

eζb( ji ). (5.20)

This expression counts the possible excursions away from the interface up to length n with their weight under
the polymer measure.

Let
bζ(k) = eζ−r (ζ)k b(k), k ∈N. (5.21)

By (5.18), this is a probability distribution onN. Moreover, because r (ζ) > 0, we have

Mbζ =
∑

k∈N
kbζ(k) <∞. (5.22)
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s s s s s
0 j1 jm n. . . . . .

Figure 5.7: Illustration of (5.20).

Now, let T = (Tl )l∈N0 denote the sequence of random times obtained from bζ as follows: T0 = 0, and

(1) Tl+1 −Tl , l ∈N0, are i.i.d.,

(2) Pζ(Tl+1 −Tl = k) = Pζ(T1 = k) = bζ(2k), k ∈N, l ∈N,
(5.23)

where Pζ denotes the law of T . A random process with property (1) is called a renewal process. The successive
times Tl , l ∈ N, are called renewal times. Because bζ(0) = 0, Pζ(Tl+1 −Tl ≥ 1) = 1 for all l ∈ N0 and thus
Pζ(Tm ≤ n) = 0 for n < m. Hence Pζ(∃m ∈N0 : Tm = n) = Pζ(∃m ∈ {0, . . . ,n} : Tm = n).

With the help of (5.21), we may rewrite (5.20) as

Z ζ,0
n = er (ζ)n Pζ

(∃m ∈N0 : Tm = n
)
,

Pζ
(∃m ∈N0 : Tm = n

)= Pζ
(∃m ∈ {0, . . . ,n} : Tm = n

)= n∑
m=1

∑
j1,..., jm∈N

j1+···+ jm=n

m∏
i=1

bζ( ji ). (5.24)

By the so-called renewal theorem (see Theorem 5.3 below), we have

lim
n→∞Pζ(n ∈ T ) = 1

M bζ
. (5.25)

Intuitively, what (5.25) says is that a far away integer is hit by the renewal process with a probability that
is equal to one over the average spacing between the renewal times. Combining (5.15) and (5.24–5.25), we
find that f 0(ζ) = limn→∞ 1

n log Z ζ,0
n = r (ζ). Since f 0 = f , as shown in the proof of Theorem 5.1, we get f (ζ) =

r (ζ).

The proof of the following theorem can be found in standard textbooks on stochastic processes.

Theorem 5.3 (Renewal Theorem). Let (τi )i∈N be a sequence of i.i.d. N-valued random variables with 0 <
E(τ1) <∞ and P (τ1 = k) > 0 for all k ∈N. Let Tn =∑n

i=1τi . Then

lim
n→∞P

(∃m ∈N : Tm = n
)= 1

E(τ1)
. (5.26)

Phase transition. Theorem 5.2 shows that ζ 7→ f (ζ) is non-analytic at ζc = 0. Since x 7→ B(x) is strictly
increasing and analytic on (0,1), it follows from (5.18) and the implicit function theorem that ζ 7→ f (ζ) is
strictly increasing and analytic on (0,∞). Consequently, ζc = 0 is the only point of non-analyticity of f , and
corresponds to the phase transition.

Exercise 5.3. Give a reference for the implicit function theorem (i.e., give the Author, Title, Volume, Pub-
lisher(book)/Journal(article), Year (and place(book)) of publication, Pages(article)).

For SRW we have
B(z) = 1−

√
1− z2, z ∈ [0,1]. (5.27)
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0
ζ

f (ζ)
1
2ζ− 1

2 log2

s
Figure 5.8: Plot of the pinned free energy.

1
2

0
ζ

f ′(ζ)

s

Figure 5.9: Plot of the average fraction of adsorbed monomers. In view of the relation of f ′ with the fraction
of absorbed monomers (see (5.9)) one can see that ζ> 0 corresponds to the localised phase and ζ≤ 0 to the
delocalised phase.

Exercise 5.4. The goal of this exercise is to derive (5.27). Recall the definition of F (0; z) and G(0; z) in (2.35)
and the definition of a(k) and b(k) in (5.5).
(1) Prove that G(0; z) =∑

k∈N0
a(2k)z2k .

(2) Prove that B(z) = F (0; z) = (z2 −1)G(0; z)+1.
(3) Derive (5.27) Hint: use (2.36).

It follows from (5.18) and (5.27) that

r (ζ) = 1
2ζ− 1

2 log(2−e−ζ), ζ> 0. (5.28)

Figs. 5.8–5.9 show plots of the free energy and its derivative based on (5.28). Note that ζ 7→ f (ζ) is quadratic
in a right-neighbourhood of ζc = 0, namely, f (ζ) ∼ 1

2ζ
2, ζ ↓ 0. Therefore f ′ is continuous at ζc = 0, while f ′′ is

not. In physics terminology this is expressed by saying that the phase transition is second order.

5.2 Wetting

Next we investigate in what way the results in Section 5.1 are to be modified when the substrate is impene-
trable, i.e., when the set of paths Wn in (5.1) is replaced by (see Fig. 5.10)

W +
n =

{
w = (i , wi )n

i=0 : w0 = 0, wi+1 −wi ∈ {−1,+1} ∀0 ≤ i < n, wi ∈N0 ∀0 ≤ i ≤ n
}

. (5.29)

Let P̄+
n be the uniform distribution on W +

n . Analoguesly as in Section 5.1 let

P̄ζ,+
n (w) = 1

Z ζ,+
n

eζKn (w) P̄+
n (w), w ∈Wn , Z ζ,+

n = ∑
w∈W +

n

eζKn (w) P̄+
n (w), f +(ζ) = lim

n→∞
1

n
log Z ζ,+

n (5.30)
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N× {0}
(0,0)

Figure 5.10: A 7-step path inN0 ×N0 that makes 2 visits toN× {0}.

be the path measure, partition sum and free energy in this version of the model.
The free energy can be computed using the same excursion approach as in Section 5.1. Theorem 5.1

therefore carries over immediately. The analogue of Theorem 5.2 reads as follows.

Theorem 5.4. The free energy is given by

f +(ζ) =
 0, if ζ≤ ζ+c ,

r+(ζ), if ζ> ζ+c ,
(5.31)

where r+(ζ) is the unique solution of the equation

B(e−r ) = e−(ζ−ζ+c ), ζ> ζ+c , (5.32)

and ζ+c = log2.

Proof. The proof uses a comparison with the pinned polymer. For n ∈ N, let An = {A ⊂ 2N : A ⊂ (0,n]}. For
A ∈An , let

Nn(A) = {
w ∈Wn : wa = 0 if and only if a ∈ A∪ {0}

}
,

N +
n (A) = {

w ∈W +
n : wa = 0 if and only if a ∈ A∪ {0}

}
.

(5.33)

Then

|Nn(A)| =
 2|A|+1|N +

n (A)|, if n ∉ A,

2|A||N +
n (A)|, if n ∈ A.

(5.34)

Since
Z ζ

n = 2−n
∑

A∈An

|Nn(A)|eζ|A|,

Z ζ,+
n = 1

|W +
n |

∑
A∈An

|N +
n (A)|eζ|A|,

(5.35)

it follows that

Z ζ,+
n ≤ 2n

|W +
n |Z ζ−log2

n ≤ 2 Z ζ,+
n . (5.36)

One has |W +
2n | ≥ |N +

2n({2n})| =Cn , where Cn = 1
n+1

(2n
n

)
is the n-th Catalan number, whence

0 ≤ 1
2n log

22n

|W +
2n |

≤ − 1
n log(n +1)− 1

n log(

(
2n

n

)
2−2n). (5.37)
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Figure 5.11: Schematic representation of the two strands of DNA in the Poland-Sheraga model. The dotted
lines are the interacting base pairs, the loops are the denaturated segments without interaction.

As |W +
2n+1| ≥ |N +

2n+1({2n})| = |N +
2n({2n})| we have (see (1.10))

lim
n→∞

1
n log

2n

|W +
n | = 0. (5.38)

Therefore f +(ζ) = f (ζ− log2) and ζ+c = ζc + log2.

Note that ζ+c > 0 in Theorem 5.4 whereas ζc = 0 in Theorem 5.2. Apparently, localization on an impenetrable
substrate is harder than on a penetrable substrate. Note that the wetted free energy is a shift of the pinned free
energy.

Exercise 5.5. Prove (5.34)–(5.36).

In physics terminology, the polymer suffers a loss of entropy when it localizes in the wetting situation.

5.3 ? Poland-Sheraga model

The wetting version of the polymer adsorption model can be used to describe the so-called denaturation
transition of DNA. DNA is a string of adenine-thymine (A-T) and cytosine-guanine (C-G) base pairs forming
a double helix. A and T share two hydrogen bonds, C and G share three. If we think of the two strands as
performing random walks in three-dimensional space subject to the restriction that they do not cross each
other, then the distance between the two strands is a random walk in the presence of a wall. This represen-
tation of DNA is called the Poland-Sheraga model (see Fig. 5.11). The localized phase corresponds to the
bounded phase of DNA where the two strands are attached, the delocalized phase corresponds to the denat-
urated phase where the two strands are detached. Upon heating, the hydrogen bonds that keep the base pairs
together can break and the two strands can separate, either partially or completely.

The Poland-Sheraga model is not entirely realistic. Since the order of the base pairs in DNA is irregular
and their binding energies are different, we should actually think of DNA as a wetted polymer with binary
disorder, i.e., we must modify the model in such a way that the binding energy that is picked up location i
of the substrate is not a fixed number ζ but is given by a random variable ζi taking two different values. It is
also not realistic to presume that the two strands can be modelled as SRWs. However, the theory of wetting
allows for a general excursion length law (as long as it satisfies certain regularity properties). Hence, we may
attempt to pick an excursion law that approximates the true spatial behaviour of DNA strands, one that takes
into account for instance the self-avoidance within the denaturated segments. There is an extended literature
on this subject.
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Chapter 6

Random Walk and Brownian Motion

Brownian motion has already appeared in Chapter 4 as the scaling limit of simple random walk (in any di-
mension) and self-avoiding walk (in high enough dimension). It is time to give a formal definition of Brown-
ian motion and identify its main properties.

The presentation below is based on the following literature:

(1) P. Billingsley, Convergence of Probability Measures, Wiley Series in Probability and Statistics, 2008.

(2) P. Mörters, Y. Peres, Brownian Motion, Cambridge Series in Statistical and Probabilistic Mathematics,
Vol. 30, 2010. http://www.stat.berkeley.edu/~peres/bmbook.pdf

(3) S. Lalley, Lecture Notes on Brownian Motion, University of Chicago, 2012.
galton.uchicago.edu/~lalley/Courses/390/Lecture5.pdf

6.1 Historical perspective

Figure 6.1: Robert Brown, Albert Einstein, Jean Perrin, Norbert Wiener.

Brownian motion is named after the Scottish botanist Robert Brown, who in 1827 observed the irregular
motion of pollen particles floating in water and attributed this to an interaction between the pollen particles
and the water. Later, in 1905, the Swiss physicist Albert Einstein showed that Brownian motion is the result
of the erratic collision of solvent particles against solution particles, and used this to support the atomic view
of matter put forward by the Austrian physicist Ludwig Boltzmann in the 1870’s. His computations were
confirmed in a series of experiments by French physicist Jean Perrin, who in 1926 received the Nobel Prize
for his work.

Perhaps the discovery of Brownian motion is older. In 1785 the Dutch physiologist, biologist and chemist
Jan Ingenhousz (1730-1799) described the irregular movement of coal dust on the surface of alcohol and
therefore has a claim as the discoverer of what later came to be known as Brownian motion. The Dutch
scientist Antoni van Leeuwenhoek (17th century), who invented the microscope, must have seen a similar
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motion also when observing mesoscopic samples from nature, but Brown was the first to understand that it
was not caused organically, i.e., by the pollen particles themselves.

The American mathematician Norbert Wiener was the first to give a rigorous mathematical description
of Brownian motion. He constructed a probability measure on the space of continuous paths with the appro-
priate properties.

6.2 Random graphs from simple random walks

Figure 6.2: Simulations of t 7→ Wn(t ) in (6.1–6.2) obtained from scaled simple random walks of length n =
20,200,2000.

Consider a one-dimensional simple random walk Sn =∑n
k=1 Xk . The graphs in Fig. 6.2 are obtained after

connecting consecutive points {(k,Sk )}n
k=0 by straight lines and rescaling the horizontal axis by a factor 1/n

and the vertical axis by a factor 1/
p

n. More precisely, the random graphs Wn(t ), t ∈ [0,1], are obtained as
follows:

(1) For t ∈ [0,1] such that nt is an integer, we put

Wn(t ) = 1p
n

Snt . (6.1)

(2) For all other t ∈ [0,1] there is a unique integer k such that k/n < t < (k +1)/n, namely, k = bntc with b·c
denoting the lower integer part, and we put

Wn(t ) =Wn

(
k

n

)
[1− (nt −k)]+Wn

(
k +1

n

)
(nt −k), (6.2)

i.e., the linear interpolation between the points in (6.1) as drawn in Fig. 6.2.

Taking into account that

Wn

(
k +1

n

)
=Wn

(
k

n

)
+ Xk+1p

n
, (6.3)

we can write (6.2) as

Wn(t ) =Wn

(
k

n

)
+ Xk+1p

n
(nt −k), (6.4)
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where the last term is uniformly small, namely,∣∣∣ Xbntc+1p
n

(nt −bntc)
∣∣∣≤ 1p

n
. (6.5)

Thus, the increments across the interpolation vanish in the limit as n →∞.
The random function Wn : [0,1] →R has the following four properties:

(i) Wn(0) = 0.

(ii) t 7→Wn(t ) is a continuous function on [0,1].

(iii) For all t ∈ [0,1], Wn(t ) converges in distribution to the normal distribution with mean 0 and variance t :

Wn(t ) =⇒p
t Z , n →∞, (6.6)

where Z ∼N (0,1).

(iv) For all m integer and all 0 ≤ t1 < . . . < tm ≤ 1 such that nt1, . . . ,ntm are integer, the increments

Wn(t j )−Wn(t j−1), j = 1, . . . ,m, (6.7)

are independent random variables.

Property (iii) follows by writing (6.4) as

Wn(t ) =
√

bntc
n

1pbntcSbntc+
Xbntc+1p

n
(nt −bntc) (6.8)

and using (6.5) in combination with the CLT. Lemma 6.1 and Exercise 6.1 below explain the details.

Lemma 6.1. Let (an)n∈N be a sequence in (0,∞) that converges to a ∈ (0,∞). Suppose that (Xn)n∈N and X are
random variables such that Xn =⇒ X , and that (Yn)n∈N are random variables with |Yn | ≤ bn for some sequence
(bn)n∈N in [0,∞) such that bn → 0. Then

an Xn +Yn =⇒ aX . (6.9)

Proof. ? Because an 6= 0 for all n ∈N, we have

P (an Xn +Yn ≤ x) = P
(
Xn ≤ 1

an
(x −Yn)

)
, (6.10)

P
(
Xn ≤ 1

an
(x −bn)

)≤ P
(
Xn ≤ 1

an
(x −Yn)

)≤ P
(
Xn ≤ 1

an
(x +bn)

)
. (6.11)

Let F (x) = P (X ≤ x), x ∈R. Let x ∈R be such that 1
a x is a continuity point of F . Let ε> 0 and let δ> 0 be such

that |F ( 1
a x)−F (y)| < ε for y ∈Rwith | 1

a x−y | ≤ δ. Let N ∈N be such that, for all n ≥ N (with Fn(x) = P (Xn ≤ x)),

|Fn( 1
a x −δ)−F ( 1

a x −δ)| < ε, |Fn( 1
a x +δ)−F ( 1

a x +δ)| < ε, (6.12)

| 1
an

(x −bn))− 1
a x| < δ, | 1

an
(x +bn))− 1

a x| < δ. (6.13)

Then, for n ≥ N ,

P (Xn ≤ 1
an

(x +bn)) ≤ P (Xn ≤ 1
a x +δ) ≤ F ( 1

a x +δ)+ε≤ F ( 1
a x)+2ε, (6.14)

P (Xn ≤ 1
an

(x −bn)) ≥ P (Xn ≤ 1
a x −δ) ≥ F ( 1

a x −δ)−ε≥ F ( 1
a x)−2ε. (6.15)

Thus |P (an Xn +Yn ≤ x)−F ( 1
a x)| < 2ε for n ≥ N . Since P (aX ≤ x) = F ( 1

a x), this implies (6.9).

Exercise 6.1. Show that for all 0 ≤ t1 < t2 ≤ 1 the increment Wn(t2)−Wn(t1) converges in distribution to the
normal distribution with mean 0 and variance t2 − t1.
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6.3 Wiener process

Definition 6.2. A standard Wiener process (also known as standard Brownian motion) is a stochastic process
W = (W (t ))t≥0 assuming real values with the following four properties:

(i) W (0) = 0.

(ii) With probability 1, the function t 7→W (t ) is continuous.

(iii) For all t , s > 0, the increment W (t + s)−W (t ) is N (0, s)-distributed.

(iv) For all t1 < t2 < . . . < tm , the increments

W (t2)−W (t1), W (t3)−W (t2), . . . , W (tm)−W (tm−1) (6.16)

are independent.

A realisation of the Wiener process is drawn in Fig. 6.3.

Figure 6.3: A realisation of the Wiener process, viewed from its starting point and from its ending point at a
given time.

Remark 6.3. The following observations are in order.

(a) Property (iii) implies that W has stationary increments, i.e., the distribution of W (t + s)−W (t ) is inde-
pendent of t .

(b) W is an example of a stochastic process with stationary and independent increments.

(c) W̃ = (W̃ (t ))t≥0 with W̃ (t ) =σW (t ), σ> 0, is a stochastic process with the same properties, except that

W̃ (t + s)−W̃ (t ) ∼N (0, sσ2). (6.17)

A priori it is not clear that there exists a family of random variables W (t ) indexed by t ≥ 0 satisfying all
four properties in Definition 6.2. However, comparing the four properties of the scaled simple random walk
process Wn(t ) with those of the standard Wiener process W (t ), we are inclined to believe that the random
function Wn =Wn(·) converges to the random function W =W (·) in some appropriate sense. In Sections 6.4–
6.5 we will deal with the existence and the uniqueness of W .

Exercise 6.2. Assume that Wiener processes exist on [0,1] (this will be proved in §6.4 and in §6.5). Assume
that W1,W2, . . . are independent Wiener processes on [0,1]. Define W on [0,∞) by

W (t ) =W 1(1)+·· ·W btc−1(1)+W btc(t −btc) (6.18)
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Show that W satisfies (i),(ii) and (iii) of Definition 6.2. Hints: For (ii): First show that for a countable number of
events En with P (En) = 1 for all n ∈N it is true that P (

⋂
n∈NEn) = 1. For (iii): If bs+tc > btc, write W (s+t )−W (t )

as a sum of independent normal random variables. Use that independence between the W1,W2, . . . implies
independence between their increments. Bonus: Show that W satisfies (iv) of Definition 6.2.

Exercise 6.3. Prove that the following stochastics processes are also standard Wiener processes on [0,∞):

(1) (−W (t ))t≥0.

(2) (W (t + s)−W (s))t≥0.

(3) (aW (t/a2))t≥0 for any a 6= 0.

6.4 ? Existence of the Wiener process [intermezzo]

Let C =C ([0,1]) be the space of continuous functions on [0,1]. We equip C with the uniform norm ‖ · ‖ : C →
R+ defined by

‖ f ‖ = sup
x∈[0,1]

| f (x)|. (6.19)

Consider also the corresponding metric ρ( f , g ) = ‖ f − g‖. It is easy to show that with this metric C ([0,1])
becomes a complete separable metric space. The Wiener space W = W ([0,1]) is defined to be the space of
those f ∈C satisfying f (0) = 0.

Remark 6.4. A real-valued continuous-time stochastic process X = (X (t ))t∈[0,1] with continuous sample
paths satisfying X (ω,0) = 0 can be thought of as a random variable defined on some probability space (Ω,P )
taking values in W :

X : Ω→W . (6.20)

Suppose for the moment that the Wiener process exists. This process induces the Wiener measure, a proba-
bility distribution on W defined for, say, open sets A ⊂W by

PW (A) = P
(
ω ∈Ω : X (ω, ·) ∈ A

)
. (6.21)

Conversely, if we construct a Wiener measure PW on W , then we establish existence of the Wiener process.

Let PW
n be the probability measure induced on W but for the rescaled random walk path Wn :

Wn(t ) = 1p
n

Sbntc+
Xbntc+1p

n
(nt −bntc), t ∈ [0,1]. (6.22)

We claim that the sequence (PW
n )n∈N converges weakly to some probability measure PW on W , written

PW
n =⇒ PW . By definition, weak convergence means that for any bounded continuous function f : W → R

the corresponding expected values converge, i.e.,

lim
n→∞E

(
f (Wn)

)= E( f (W )
)
, (6.23)

where Wn ∼ PW
n and W ∼ PW . Moreover, the expected values E( f (W )), where W ∼ PW and f ranges over

the set of all bounded continuous functions on W , completely determine PW . This definition of the weak
convergence generalises the notion of convergence in distribution of probability distributions on the real line.

The desired convergence will be achieved in two steps (henceforth we drop the superscript W ):
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Step 1: Convergence of the finite-dimensional marginal distributions: for any t1 < t2 < . . . < tk ,

(Wn(t1), . . . ,Wn(tk )) =⇒ (W (t1), . . . ,W (tk )). (6.24)

Therefore, if f : W → R is such that f (W ), W ∈ W , depends only on the values of W at t1, . . . , tk ∈ [0,1],
then we have established convergence

lim
n→∞E

(
f (Wn)

)= E( f (W )
)
. (6.25)

Step 2: In general, the weak convergence Pn =⇒ P does not follow from the weak convergence of the
finite-dimensional distributions. We need to impose additional conditions to capture what is happen-
ing at intermediate times. In particular, we need to show tightness: a sequence of probability measures
(Pn)n∈N on C is tight when for every ε> 0 there exists a compact set K = K (ε) ⊂C such that

Pn(K ) ≥ 1−ε ∀n ∈N. (6.26)

Exercise 6.4. Prove (6.24). Hint: Note the following facts: If X 1
n , . . . , X d

n are independent for all n ∈ N,
then (X 1

n , . . . , X d
n ) =⇒ (X 1, . . . , X d ) when X i

n =⇒ X i for i ∈ {1, . . . ,d}. For a d × d invertable matrix A and
a d-dimensional random vector X we have P (AX ≤ x) = P (X ≤ A−1x), and hence Xn =⇒ X if and only if
AXn =⇒ AX .

On the space C the tightness of a sequence (Pn)n∈N can be checked effectively.

Theorem 6.5. The sequence of measures (Pn)n∈N on C is tight if and only if the following two conditions hold:

(a) For every η> 0 there exists an a > 0 such that

Pn
(
w ∈C : |w(0)| > a

)≤ η ∀n ∈N. (6.27)

(b) For every ε,η> 0 there exist 0 < δ< 1 and n0 ∈N such that

Pn

(
w ∈C : sup

t≤s≤t+δ
|w(s)−w(t )| ≥ ε

)
≤ ηδ, ∀n ≥ n0, t ≥ 0. (6.28)

1. For our random functions

Wn(t ) = 1p
n

Sbntc+
Xbntc+1p

n
(nt −bntc), (6.29)

we have Wn(0) = 0 and so condition (a) is automatic. To prove condition (b) we need to check that the func-
tions Wn(·) do not oscillate too wildly. For simplicity, let us assume that t = k/n and δ = m/n, and consider
the event

A =
 sup

s∈{ k
n ,..., k+m

n }

|Wn(s)−Wn(t )| ≥ ε
=

{
sup

j∈{1,...,m}
|Sk+ j −Sk | ≥λ

p
m

}
(6.30)

with λ= ε/
p
δ. In Step 3 below will prove that

Pn(A) ≤ 2Pn

(
|Sk+m −Sk | ≥ (λ−

p
2)
p

m
)

. (6.31)

2. The inequality in (6.31) is trivial when λ < p
2. Therefore suppose that λ > 2

p
2. Then λ−p

2 > 1
2λ, and

hence

Pn

(
sup

j∈{1,...,m}
|Sk+ j −Sk | ≥λ

p
m

)
≤ 2Pn

(|Sk+m −Sk | ≥ 1
2λ

p
m

)
. (6.32)
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However, by the Central Limit Theorem,

Pn

(
1p
m

|Sk+m −Sk | ≥ 1
2λ

)
→ P

(|Z | > 1
2λ

)= P
(|Z |3 > 1

8λ
3)≤ 8

λ3 E [|Z |3]. (6.33)

Therefore

limsup
n→∞

Pn

 sup
s∈{ k

n ,..., k+m
n }

|Wn(s)−Wn(t )| ≥ ε
≤ Cδ3/2

ε3 =
(

Cδ1/2

ε3

)
δ≤ ηδ (6.34)

for δ sufficiently small, uniformly in k,m. Hence condition (b) holds.

3. Suppose that λ≥p
2. Let S′

j =
∑k+ j

i=k+1 Xi , and consider the events

E j =
{
|S′

i | <λ
p

m ∀ i = 1, . . . , j −1, |S′
j | ≥λ

p
m

}
, j = 1, . . . ,m. (6.35)

These events form a partition of A. Consider the event

B =
{
|S′

m | ≥ (λ−p
2)
p

m
}

. (6.36)

Then

A =
( m⋃

i=1
(E j ∩B)

)
∪

( m⋃
j=1

(E j ∩B c )
)
. (6.37)

Hence

Pn(A) ≤ Pn(B)+
m−1∑
j=1

Pn(E j ∩B c ). (6.38)

Since the conditions |S′
j | ≥λ

p
m, |S′

m | < (λ−p
2)
p

m imply that |S′
m −S′

j | ≥
p

2m, we obtain

m−1∑
j=1

Pn(E j ∩B c ) ≤
m−1∑
j=1

Pn

(
E j ∩

{
|S′

m −S′
j | ≥

p
2m

})
=

m−1∑
j=1

Pn(E j )Pn

(
|S′

m −S′
j | ≥

p
2m

)
, (6.39)

where the last equality follow from the independence of E j and {|S′
m −S′

j } for all j . By Chebyshev’s inequality,

Pn

(
|S′

m −S′
j | ≥

p
2m

)
≤

var(S′
m −S′

j )

2m
= m − j

2m
≤ 1

2
. (6.40)

Hence

Pn(A) ≤ Pn(B)+
m−1∑
j=1

1
2 Pn(E j ) ≤ Pn(B)+ 1

2

m∑
j=1

Pn(E j ) = Pn(B)+ 1
2 Pn(A). (6.41)

Thus, Pn(A) ≤ 2Pn(B), and hence (6.31) holds.

6.5 ? Explicit construction of the Wiener process [intermezzo]

In this section we show how the Wiener process can be constructed as the limit of piecewise linear random
graphs, without taking recourse to a comparison with scaled simple random walk. The construction will be
in the line of the following remark.

Remark 6.6. Let (W (t ))t≥0 denote the standard Wiener process. Suppose (X (t ))t≥0 is a stochastic process for
which X (0) = 0, t 7→ X (t ) is continuous, and the distribution of

(X (t1), X (t2), . . . , X (tm)) (6.42)

coincides with (W (t1),W (t2), . . . ,W (tm)) for all t1 < t2 < ·· · < tm . Then (X (t ))t≥0 is a standard Wiener pro-
cess, since this implies that the distribution of (X (t1), X (t2)− X (t1), . . . , X (tm)− X (tm−1)) and (W (t1),W (t2)−
W (t1), . . . ,W (tm)−W (tm−1)) coincides for all t1 < t2 < ·· · < tm .
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Exercise 6.5. ? Check that the last statement holds and that it implies properties (iii) and (iv) of Defini-
tion 6.2.

For m ∈N0, let

Dm =
{ k

2m , k = 0, . . . ,2m
}

(6.43)

be the set of m-dyadic rationals in [0,1].

Step 1: m = 0. Let W0(0) = 0, and W0(1) = ζ0,1 with ζ0,1 ∼N (0,1). Define W0(t ) as the linear function on [0,1]
with values W0(0) = 0 and W0(1) = ζ0,1:

W0(t ) = tζ0,1. (6.44)

Note that distributions of (W0(0),W0(1)) and (W (0),W (1)) coincide.

Step 2: m = 1. Put
W1(0) =W0(0), W1(1) =W0(1). (6.45)

We select an appropriate random value for W1( 1
2 ), and choose W1(t ) to be linear on [0, 1

2 ] and [ 1
2 ,1], inter-

polating between the values W1(0), W1( 1
2 ) and W1(1). The choice of W1( 1

2 ) is motivated by the following
observation. Suppose that W is the standard Wiener process. Then

X =W ( 1
2 )−W (0), Y =W (1)−W ( 1

2 ), (6.46)

are independent N (0, 1
2 )-random variables. What is the distribution of W ( 1

2 ) given that we know W (0) = 0
and W (1)? The answer is given by the following lemma.

Lemma 6.7. Suppose that X and Y are independent random variables with X ∼ N (0, s) and Y ∼ N (0, t ).
Then the conditional distribution of X given that X +Y = z is also normal, with mean zs

s+t and variance st
s+t ,

i.e.,

distibution
(
X | X +Y = z

)=N

(
zs

s + t
,

st

s + t

)
. (6.47)

Exercise 6.6. ? Prove Lemma 6.7. Hint: Let Z = X +Y . Then Z ∼N (0, s + t ). Show that

(X , Z ) ∼N (0,Σ), with Σ=
s s

s s + t

 . (6.48)

Use

fX |Z (x|z) = fX ,Z (x, z)

fZ (z)
, (6.49)

to prove the claim.

Applying Lemma 6.7, we find that

distibution
(
W ( 1

2 ) |W (1) = ζ0,1
)=N

(1
2ζ0,1, 1

4

)
. (6.50)

Thus, if we let
W1( 1

2 ) = 1
2W1(1)+ 1

2ζ1,1 =W0( 1
2 )+ 1

2ζ1,1 (6.51)

with ζ1,1 ∼ N (0,1) and independent of ζ0,1, then we find that the joint distributions of

(W1(0),W1( 1
2 ),W1(1)), (W (0),W ( 1

2 ),W (1)), (6.52)

coincide.
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Step 3: m ∈N. Suppose that we have constructed random variables(
Wm(0),Wm

(
1

2m

)
, . . . ,Wm

(
2m −1

2m

)
,Wm(1)

)
, (6.53)

indexed by the dyadic rationals Dm , such that their joint distribution coincides with the corresponding dis-
tribution for the Wiener process (

W (0),W

(
1

2m

)
, . . . ,W

(
2m −1

2m

)
,W (1)

)
. (6.54)

If we want to extend this collection to the next level, then we need to define

Wm+1

(
k

2m+1

)
(6.55)

for odd k. The trick is to choose Wm+1(k2−m−1) conditional on Wm+1((k −1)2−m−1) and Wm+1((k +1)2−m−1),
which we already know. Indeed, an application of Lemma 1 gives

distribution

(
Wm+1

(
k

2m+1

) ∣∣∣∣ Wm+1

(
k −1

2m+1

)
= a,Wm+1

(
k −1

2m+1

)
= b

)
=N

(
a +b

2
,

1

2m+2

)
. (6.56)

Hence

Wm+1(t ) =Wm(t )+
2m∑

k=1

1

2(m+2)/2
ζm+1,kGm,2k−1(t ), (6.57)

where ζm+1,k are independent N (0,1)-random variables, and the Schrauder functions Gm,k are given by

Gm,2k−1(t ) =


2m+1t − (2k −2), for 2k−2

2m+1 ≤ t ≤ 2k−1
2m+1 ,

2k −2m+1t , for 2k−1
2m+1 ≤ t ≤ 2k

2m+1 ,

0, otherwise.

(6.58)

Theorem 6.8 (P. Lévy). If ζm,k are independent N (0,1)-random variables, then with probability one the infinite
series

W (t ) = ζ0,1t + ∑
m∈N0

2m∑
k=1

ζm+1,kGm,2k−1(t )
1

2(m+2)/2
(6.59)

converges uniformly on [0,1]. The limit function W (t ) is a standard Wiener process.

Proof. The idea is if a sequence ( fn)n∈N of continuous functions on [0,1] converges uniformly to f , then f is
continuous.

We have

W (t ) = ζ0,1t + ∑
m∈N0

Ym(t ), Ym(t ) =
2m∑

k=1
ζm+1,kGm,2k−1(t )

1

2(m+2)/2
. (6.60)

Let Hm = maxt∈[0,1] |Ym(t )| = 1/2(m+2)/2 maxk |ζm,k |. Hence, for every cm > 0,

P (Hm ≥ 2−(m+2)/2cm) ≤ P

(
max

k=1,...,2m
|ζm,k | ≥ cm

)
≤

2m∑
k=1

P (|ζm,k | ≥ cm) ≤ 2m A

cm
e−

1
2 c2

m (6.61)

for some constant A. Let cm = B
p

m for some B >√
2log2. Then

P (Hm ≥ 2−(m+2)/2cm) ≤ exp

[
m

(
log2− B 2

2

)] A′
p

m
, (6.62)
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and hence ∑
m∈N0

P (Hm ≥ 2−(m+2)/2cm) <∞. (6.63)

Therefore, by the Borel-Cantelli lemma,

P
(
Hm ≥ 2−(m+2)/2cm for infinitely many m

)= 0. (6.64)

This means that, for almost all ω, there exists an M = M(ω) such that Hm(ω) < cm for all m ≥ M . Hence the
series in (6.60) converges absolutely and uniformly on [0,1]:∣∣∣∣∣ ∞∑

m=N

2m∑
k=1

ζm+1,kGm,2k−1(t )
1

2(m+2)/2

∣∣∣∣∣≤ ∞∑
m=N

2−(m+2)/2cm → 0, N →∞. (6.65)

Exercise 6.7. ? Check that the process constructed in Theorem 6.8 is indeed the standard Wiener process:
Use the preceding to conclude that for s1 < ·· · < sn in Dm the distribution of the vector

(W (s1), . . . ,W (sn)) (6.66)

coincides with the distribution of the vector in s1 < ·· · < sn of the Wiener process. Then prove that for general
t1 < ·· · < tn the vector (W (t1), . . . ,W (tn)) also has the desired properties by a limiting argument: Almost sure
convergence implies convergence in law, i.e., convergence in distribution, also called weak convergence (no
proof is needed for this implication).

6.6 ? Path properties of the Wiener process [intermezzo]

There are continuous functions that are nowhere differentiable. It is a good exercise to construct an example
of such a function, but this is not so easy. Interestingly, it turns out that the path of a Brownian motion has
this property almost surely. On the other hand, it does have some form of "smoothness". Below we list a few
key properties without proof.

For f : [0,1) →R, define the upper and lower right derivatives as

D∗ f (t ) = limsup
h↓0

f (t +h)− f (t )

h
, D∗ f (t ) = liminf

h↓0

f (t +h)− f (t )

h
. (6.67)

Theorem 6.9 (Paley, Wiener and Zygmund 1933). Almost surely, Brownian motion is nowhere differentiable
and, for all t, either D∗W (t ) =∞ or D∗W (t ) =−∞ or both.

Definition 6.10 (Hölder continuity). A function f is said to be locally α-Hölder continuous at x when there
exist ε,c > 0 such that | f (x)− f (y)| ≤ c|x − y |α for all y with |y −x| < ε.

Lemma 6.11. There exists a constant C > 0 such that, almost surely, for h > 0 sufficiently small and 0 ≤ t ≤ 1−h,

|W (t +h)−W (t )| ≤C
√

h log(1/h). (6.68)

Corollary 6.12. For everyα ∈ (0, 1
2 ), almost surely Brownian motion is everywhere locallyα-Hölder continuous.

Consider the set of zeroes of the Wiener process:

Z = {t ≥ 0: W (t ) = 0}. (6.69)

Theorem 6.13. Almost surely, Z is a perfect set, i.e., Z is closed and for every t ∈ Z there exists a sequence
(tn)n∈N of distinct elements in Z such that limn→∞ tn = t .



6.7. THE HIGHER-DIMENSIONAL WIENER PROCESS 63

6.7 The higher-dimensional Wiener process

Definition 6.14. A d-dimensional Wiener process is a stochastic process W = (W (t ))t≥0 with

W (t ) = (W1(t ), . . . ,Wd (t )) (6.70)

assuming values in Rd with the following four properties:

(i) W (0) = 0.

(ii) With probability 1, the function t 7→W (t ) is continuous.

(iii) For t , s > 0, the increment W (t + s)−W (t ) is N (0, sIdd )-distributed, where Idd is the d ×d identity
matrix.

(iv) For all t1 < t2 < . . . < tm , the increments

W (t2)−W (t1), W (t3)−W (t2), . . . , W (tm)−W (tm−1), (6.71)

are independent.

Corollary 6.15. If W is the d-dimensional Wiener process, then each component W j = (W j (t ))t≥0 is the stan-
dard one-dimensional Wiener process.

The Wiener process in d dimensions has interesting invariance properties that we will not discuss, e.g.
its distribution is isotropic. For d = 2 it is even conformally invariant, i.e., its distribution is invariant under
conformal mappings of R2 (see Fig. 6.4).

Figure 6.4: A realisation of the two-dimensional Wiener process.

6.8 Diffusion equations

Given a bounded continuous function f : R→R, define

u(x, t ) = E
(

f (x +W (t ))
)
. (6.72)

Theorem 6.16 (Feynman-Kac formula). The function u(x, t ) defined in (6.72) is the unique solution of the
partial differential equation (PDE)

∂u

∂t
= 1

2

∂2u

∂x2 , u(x,0) = f (x). (6.73)

which is called the heat equation.
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Proof. Note that

u(x, t + s) = E
(

f (x +W (t + s))
)= E

(
f
(
x + [W (t + s)−W (t )]+W (t )

))
= E

(
u(x + [W (t + s)−W (t )], t )

)= E
(
u(x +W (s), t )),

(6.74)

where we use the independence of W (t +s)−W (t ) and W (t ), as well as the fact that W (t +s)−W (t ) and W (s)
have the same distribution. Consider the Taylor series expansion

u(x +W (s), t ) = u(x, t )+
[
∂

∂x
u(x, t )

]
W (s)+

[
1

2

∂2

∂x2 u(x, t )

]
W 2(s)+o(W 2(s)). (6.75)

After taking expectation and using the fact that W (s) ∼ N (0, s), in particular, E(W (s)) = 0 and E(W 2(s)) = s,
we obtain that

u(x, t + s) = E(u(x +W (s), t )) = u(x, t )+
[

1

2

∂2

∂x2 u(x, t )

]
s +o(s). (6.76)

Therefore
∂

∂t
u(x, t ) = lim

s↓0

u(x, t + s)−u(x, t )

s
= 1

2

∂2

∂x2 u(x, t ). (6.77)

The initial condition u(x,0) = E( f (x +W0)) = E( f (x)) = f (x) is clearly satisfied.

The importance of the Feynman-Kac formula in (6.72) is that it provides the solution to the heat equation
in terms of a simple formula involving Brownian motion. We think of u(x, t ) as the amount of heat at site x at
time t when f (x) is the amount of heat at site x at time t = 0.

The Feynman-Kac formula admits many generalisations. For example, if

v(x, t ) = E( f (x +W (t )))+
∫ t

0
E(g (x +W (s)))d s, (6.78)

then v(x, t ) satisfies the heat equation with a source term:

∂v

∂t
= 1

2

∂2v

∂x2 + g (x), v(x,0) = f (x). (6.79)

Similarly, if

w(x, t ) = E
(

f (x +W (t ))exp
[∫ t

0
g (x +W (s))d s

])
, (6.80)

then w(x, t ) satisfies
∂w

∂t
= 1

2

∂2w

∂x2 + g (x)w, w(x,0) = f (x). (6.81)

Exercise 6.8. ? Given a bounded continuous function f : R→R and a closed interval [a,b] ⊂R, show that a
solution of the PDE

1

2

∂2χ(x)

∂x2 = 0, x ∈ (a,b), χ(x) = f (x), x ∈ {a,b}, (6.82)

is given by
χ(x) = Ex

(
f
(
Wτ{a,b}

))
, x ∈ [a,b], (6.83)

where τ{a,b} is the first hitting time of the boundary {a,b} and Ex is expectation w.r.t. the one-dimensional
Wiener process starting at x.

The result in Exercise 6.8 is in some sense the continuous analogue of what we found in Chapter 3 for the
linear network.



Chapter 7

Random Walk and the Binomial Asset Pricing
Model

In this chapter we consider an application of random walks in finance. In this area the “random walk hypoth-
esis” states that stock market prices evolve according to a random walk and hence cannot be predicted. This
concept dates back to the 19th century, and was developed by the French mathematician Louis Bachelier (see
Fig. 7.1).

Wikipedia:

“Louis Jean-Baptiste Alphonse Bachelier (1870–1946) was a French mathematician at the turn of the
20th century. He is credited with being the first person to model the stochastic process now called
Brownian motion, which was part of his PhD thesis The Theory of Speculation, published in 1900. This
thesis, which discussed the use of Brownian motion to evaluate stock options, is historically the first
paper to use advanced mathematics in the study of finance. Thus, Bachelier is considered a pioneer in
the study of financial mathematics and stochastic processes. Also notable is that Bachelier’s work on
random walks was more mathematical and predated Einstein’s celebrated study of Brownian motion
by five years.”

Figure 7.1: Picture of Louis Bachelier at an early age.

Our exposition uses the following sources:

(1) J.C. Cox, S.A. Ross, M. Rubinstein, Option pricing: A simplified approach, Journal of Financial Eco-
nomics 7, 229 (1979).
http://www.dms.umontreal.ca/~morales/docs/cox_rubinstein_ross.pdf

(2) S.E. Shreve, Stochastic Calculus for Finance I: The Binomial Asset Pricing Model, Springer Finance, 2004.
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(3) T. Tao
http://terrytao.wordpress.com/2008/07/01/the-black-scholes-equation/

(4) Wikipedia http://en.wikipedia.org/wiki/Binomial_options_pricing_model

In Section 7.1 we formulate a model for stock pricing, look at the role of the money market and of interest
rates, and introduce the notion of arbitrage. In Section 7.2 we look at a financial derivative called option and
look at its pricing. In Section 7.3 we derive the Black-Scholes formula for the price of an option.

7.1 Stock pricing

7.1.1 The Binomial Asset Pricing Model

Stock prices are modelled in discrete time. Initially, the stock price is S0 > 0. At each time step, the stock price
changes to one of two possible values, dS0 or uS0, where d ,u satisfy

0 < d < 1 < u. (7.1)

The change from S0 to dS0 represents a downward movement, while the change from S0 to uS0 represents
an upward movement. Suppose that a coin is tossed. When the outcome is “Head” the stock price moves up,
when the outcome is “Tail" the stock price moves down:

S1(ω) =
{

uS0, if ω= H ,

dS0, if ω= T.
(7.2)

S2(H H) = u2S0

S1(H) = uS0

S0 S2(HT ) = S2(T H) = udS0

S1(T ) = dS0

S2(T T ) = d 2S0

H

T

H

T

H

T

Figure 7.2: Price dynamics over two periods.

Using a series of N coin tosses, we can define an N -period model (see Fig. 7.2 for N = 2). The sample
space of the N -period model is

Ω= {
ω= (ω1, . . . ,ωN ) : ωk ∈ {T, H }

}
. (7.3)

http://en.wikipedia.org/wiki/Binomial_options_pricing_model
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The link with random walks is obvious: we can equally well represent the sample space as

Ω= {
ω= (ω1, . . . ,ωN ) : ωk ∈ {−1,+1}

}
, (7.4)

with Xk (ω) =ωk being the outcome of the k-th coin flip. Then the price after N -periods is given by

SN (ω) = S0u|{1≤k≤N : Xk (ω)=+1}|d |{1≤k≤N : Xk (ω)=−1}| = S0(ud)
N
2

(u

d

)1
2

∑N
k=1 Xk (ω)

. (7.5)

In particular, if the up-factor u and the down-factor d satisfy

ud = 1, (7.6)

then
SN (ω) = S0u

∑N
k=1 Xk (ω). (7.7)

Here,
∑N

k=1 Xk (ω), which is the position of the random walk at time N , models the stock price after N periods.

7.1.2 Money market, interest rate and portfolio

Apart from buying and selling stocks, an investor may lend or borrow money, and receive or pay rent. One
euro invested in the money market at time 0 will yield (1+ r ) euro at time 1. Similarly, one euro borrowed
from the money market at time 0 will result in a debt of 1+r euro at time 1. Thus, we assume that the interest
rate for lending and borrowing is the same. This assumption is definitely not realistic for university students,
but it is nearly true for large financial institutions.

The interest rate r does not have to be non-negative. For example, in May 2013 the government of The
Netherlands was able to borrow money with interest rate r =−0.039 percent, while in July 2014 the European
Central Bank (ECB) set the interest rate for deposits at −0.10 percent.

Exercise 7.1. Think of at least two economical reasons for negative interest rates.

However, throughout the sequel we always assume that 1+ r > 0.

Definition 7.1. A portfolio is a collection of assets P = (M ,∆) consisting of M euros capital and ∆ shares of
stock at price S.

7.1.3 Arbitrage

Definition 7.2. Arbitrage is the possibility of a risk-free profit (see also Exercise 7.3).

More specifically, arbitrage is defined as a trading strategy that starts with no money, has zero probability of
loss, and has a positive probability of making profit. In practice, arbitrage is the practice of taking advantage
of a price difference between two or more markets by constructing a combination of deals that capitalise
upon the imbalance, the profit being the difference between the market prices.

The theory of option pricing to be described below assumes no arbitrage, i.e., the financial market does
not allow for a risk-free profit. This assumption is quite natural, for otherwise we could all become rich
without running a risk. We show that this assumption places a restriction on our parameters, namely,

d < 1+ r < u. (7.8)

Consider the Binomial Asset Pricing Model with parameters u,d and the money market with interest rate
r . Suppose that

1+ r ≤ d < u. (7.9)

In this case we can borrow money at interest rate r and invest in stock. The stock price increases at least as
fast as the debt that is used to buy it and so profit is made.
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Exercise 7.2. Demonstrate with the help “Short Selling” that there is also arbitrage when d < u < 1+ r .

Wikipedia:

Short Selling (also known as shorting or going short) is the sale of a security that is not owned by the
seller, or that the seller has borrowed. For the purposes of this chapter, the short seller receives a current
price for the asset, but at the same time is obliged to deliver the asset to the buyer at the end of a period.
If the price of the asset decreases, then the short seller profits: the cost of repurchase in the next period
is less than the proceeds that were received upon the initial short sale. Conversely, if the price of the
asset increases, then the short seller endures a loss because the proceeds are not sufficient to cover the
price of the asset in the next period.

In the following we will assume that there is no arbitrage in the stock and money markets, i.e., (7.8) holds.

Exercise 7.3. Show that under (7.8) the financial market has no arbitrage. Hint: Suppose that d < 1+ r < u
and that arbitrage is possible. The latter means that at time zero we can form a portfolioP= (M0,∆0), consist-
ing of M0 euros and ∆0 shares at price S0, such that the value of the portfolio at time 0 is V0 = M0 +∆0S0 = 0,
while the value V1 at time 1 satisfies P (V1 ≥ 0) = 1 and P (V1 > 0) > 0 for any choice of the probabilities
p = P (ω = H), 1− p = P (ω = T ), p ∈ (0,1). Arrive at a contradiction by identifying a probability distribu-
tion Q on {H ,T }, i.e., a q ∈ (0,1) with q = Q(ω = H), 1− q = Q(ω = T ), such that under this distribution of
upward and downward moves the expected value of V1 is zero.

The probability distribution Q is called the risk-neutral measure. Note that Q is “equivalent to” the prob-
ability distribution P describing the true market moves, i.e., there exist two constants c,c ∈ (0,∞) such that

c Q(ω) ≤ P (ω) ≤ c Q(ω) ∀ω ∈Ω. (7.10)

Exercise 7.3 is a particular case of the following more general statement, for which we refer to the literature.

Theorem 7.3 (First Fundamental Theorem of Asset Pricing). A discrete market on a discrete probability space
(Ω,P ) is arbitrage-free if and only if there exists at least one risk-neutral probability measure Q that is equiva-
lent to the original probability measure P., i.e.,

EQ (V1) =V0, (7.11)

where Vi is the value of the portfolio at time i .

7.2 Financial derivatives

7.2.1 Call and put options

Wikipedia:

“A derivative is a financial contract which derives its value from the performance of another entity
such as an asset, index, or interest rate, called the “underlying”. Derivatives are one of the three main
categories of financial instruments, the other two being equities (i.e., stocks) and debts (i.e., bonds and
mortgages). Derivatives include a variety of financial contracts, including futures, forwards, swaps,
options, and variations of these such as caps, floors, collars, and credit default swaps.”

Definition 7.4. [Options]
(1) A European call option with strike price K > 0 and expiration time t > 0 gives the right (but not the obliga-
tion) to buy the stock at time t for K euros. The value at time t is (St −K )+ = max{St −K ,0}. The stock is the



7.2. FINANCIAL DERIVATIVES 69

underlying asset.
(2) A European put option with strike price K > 0 and expiration time t > 0 gives the right (but not the obliga-
tion) to sell the stock at time t for K euros. The value at time t is (K −St )+.
(3) American call options or put options can be exercised at any time before the expiration time t .

In the remainder of this section we focus on European call options and ask what is a fair price: What price
should be charged to the buyer of the option for being allowed to exercise the right?

7.2.2 Option pricing: one period

What is the price of a European call option at time 0 with expiration time 1?
Let us consider an example. Suppose that S0 = 4, u = 1

d = 2 and r = 1
4 . Hence

S1(H) = uS0 = 8, S1(T ) = dS0 = 2. (7.12)

Suppose that you want to determine the price of a European call option at strike price K = 5 and expiration
time t = 1. This goes as follows. Note that the value of the option at time t = 1 is

(S1(ω)−K )+ =
{

3, ω= H ,

0, ω= T.
(7.13)

We are going to replicate the option by constructing a portfolio with the same performance. Suppose that
your initial wealth is X0 = 1.2 and you buy ∆0 = 1

2 shares of stock at time 0, which costs

∆0S0 = 1

2
×4 = 2. (7.14)

In order to do so you have to borrow at the money market 0.8 euro, namely,

X0 −∆0S0 = 1.2−2 =−0.8. (7.15)

At time t = 1, your cash position is

(X0 −∆0S0)(1+ r ) =−1, (7.16)

i.e., you have to pay back 1 euro. Your stock∆0S1 is worth 4 euros ifω= H and 1 euro ifω= T . Thus, the value
of the portfolio at time t = 1 is

V1(ω) = (X0 −∆0S0)(1+ r )+∆0S1(ω) =
{

(−1)+4 = 3, ω= H ,

(−1)+1 = 0, ω= T.
(7.17)

Note that the value of the portfolio at time t = 1 in (7.17) is precisely the value of the option at time t = 1 in
(7.13), i.e.,

V1(ω) = (S1(ω)−K )+. (7.18)

The initial wealth X0 = 1.2, needed to set up the replicating portfolio above, is actually the no-arbitrage
price of the option of time 0. Why is that?

• If we can sell the option for more, e.g. 1.21 euro, then we can replicate the option for 1.20 and put the
excess 0.01 into the money market with a guaranteed profit. At time t = 1 we can pay off the option,
and we are guaranteed a profit of 0.0125 euro.
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• Conversely, if we can buy the option for less than 1.20, e.g. 1.19 euro, then we can proceed as follows:
we short sell ∆0 = 1

2 shares of stock (giving us 2 euros), buy 1 option for 1.19, and put the difference
2−1.19 = 0.81 into the money market. At time 1 we have to return the share, i.e., pay either 4 (ω= H) or
1 (ω= T ). But the option will gives us either 3 euros (ω= H) or 0 euros (ω= T ), while the money market
gives us 0.81× (1+ r ) = 1.0125 euro. Hence our position is covered (i.e., we can fulfil our obligations),
and we are guaranteed a profit of 0.0125 euro.

More generally, given that the value of an option at time t = 1 is C1(ω), we have to find X0 and ∆0 such
that

V1(ω) = (X0 −∆0S0)(1+ r )+∆0S1(ω)

= X0(1+ r )+ (∆0S1(ω)−∆0S0(1+ r )) =def C1(ω).
(7.19)

Picking ω= H or ω= T , we get

X0 +∆0

( 1

1+ r
S1(H)−S0

)
= 1

1+ r
C1(H),

X0 +∆0

( 1

1+ r
S1(T )−S0

)
= 1

1+ r
C1(T ).

(7.20)

Exercise 7.4. Show that the solution of (7.20) is given by

∆0 = C1(H)−C1(T )

S1(H)−S1(T )
, X0 = 1

1+ r
[qC1(H)+ (1−q)C1(T )], (7.21)

where q = 1+r−d
u−d ∈ (0,1) because d < 1+ r < u.

We conclude the following.

• The arbitrage-free price of the European call option expiring after period 1 is given by

C0 = 1

1+ r
[qC1(H)+ (1−q)C1(T )], q = 1+ r −d

u −d
. (7.22)

• Replication of the portfolio amounts to: sell one call option at price C0, buy

∆0 = C1(H)−C1(T )

S1(H)−S1(T )
(7.23)

shares at price S0.

7.2.3 Option pricing: multiple periods

We would like to repeat the above reasoning for N periods rather than one period. The answer, which we
state without proof, is given in the following theorem.

Theorem 7.5 (Replication in the multi-period binomial model). Consider an N -period Binomial Asset Pricing
Model with no arbitrage. Let

q = 1+ r −d

u −d
, 1−q = u −1− r

u −d
. (7.24)

Let CN = CN (ω1, . . . ,ωN ) be a random variable that describes a derivative security paying off at time N . For
example, in the case of the European call option,

CN = (SN (ω1, . . . ,ωN )−K )+. (7.25)
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(I) Define, recursively backwards in time, a sequence of random variables CN−1, . . . ,C0 by putting

Cn(ω1, . . . ,ωn) = 1

1+ r

(
qCn+1(ω1, . . . ,ωn , H)+ (1−q)Cn+1(ω1, . . . ,ωn ,T )

)
, n = N −1, . . . ,0, (7.26)

and note that Cn depends on (ω1, . . . ,ωn).
(II) Define

∆n(ω1, . . . ,ωn) = Cn+1(ω1, . . . ,ωn , H)−Cn+1(ω1, . . . ,ωn ,T )

Sn+1(ω1, . . . ,ωn , H)−Sn+1(ω1, . . . ,ωn ,T )
. (7.27)

(III) Set X0 =C0 and define, recursively forwards in time, the portfolio values X1, . . . , XN by putting

Xn+1 =∆nSn+1 + (1+ r )(Xn −∆nSn), (7.28)

i.e., at period n, the portfolio consists of Xn −∆nSn euros and of ∆n shares at price Sn euros each.

Then
Xn(ω1, . . . ,ωn) =Cn(ω1, . . . ,ωn) ∀ (ω1, . . . ,ωn) ∈ {H ,T }n , n = 1, . . . , N . (7.29)

In particular, XN (ω1, . . . ,ωN ) – the value of the portfolio after N periods – is equal to the value of the option
CN (ω1, . . . ,ωN ).

Theorem 7.5 not only gives the price, it also shows how to replicate the option with the help of the con-
structed dynamic portfolio. Therefore, similarly as in the case of the pricing formula for a single period, we
conclude from Theorem 7.5 that X0 =C0 is the fair price for the European call option at expiration time t = N :
any deviation in option price from C0 will create an opportunity for arbitrage.

Exercise 7.5. Give a proof of Theorem 7.5.

7.3 Black-Scholes theory

7.3.1 Discrete Black-Scholes formula

To find C0, we need to work out the backward recursion in Theorem 7.5. To that end we analyse the call option
prices Cn(ω1, . . . ,ωn) given by (7.26): We have

C0 = 1

1+ r

(
qC1(H)+ (1−q)C1(T )

)
,

C1(H) = 1

1+ r

(
qC2(H H)+ (1−q)C2(HT )

)
,

C1(T ) = 1

1+ r

(
qC2(T H)+ (1−q)C2(T T )

)
.

(7.30)

Since C2 = (S2 −K )+ and S2(HT ) = S2(T H) = udS0, we find that C2(HT ) =C2(T H), and hence

C0 = 1

(1+ r )2

(
q2C2(H H)+2q(1−q)C2(HT )+ (1−q)2C2(T T )

)
= 1

(1+ r )2

(
q2(u2S0 −K )++2q(1−q)(udS0 −K )++ (1−q)2(d 2S0 −K )+

)
.

(7.31)

More generally,

C0 = 1

(1+ r )N

N∑
k=0

(
N

k

)
qk (1−q)N−k

(
uk d N−k S0 −K

)+
. (7.32)
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Exercise 7.6. Prove (7.32) with the help of induction, i.e., prove that for a system of N recurrence relations
given by (7.26) (and (7.25)) C0 is given by (7.32).

The formula in (7.32) is complete, but we can give a more convenient expression that allows for a proper
interpretation as well. Let a be the smallest non-negative integer such that

uad N−aS0 > K . (7.33)

Then

(uk d N−k S0 −K )+ =
 0, k < a,

uk d N−k S0 −K , k ≥ a.
(7.34)

Therefore (7.32) becomes

C0 = 1

(1+ r )N

N∑
k=a

(
N

k

)
qk (1−q)N−k

(
uk d N−k S0 −K

)
. (7.35)

Splitting this expression into two sums, we get

C0 = S0

N∑
k=a

(
N

k

)
qk (1−q)N−k

[uk d N−k

(1+ r )N

]
− K

(1+ r )N

N∑
k=a

(
N

k

)
qk (1−q)N−k

= S0

N∑
k=a

(
N

k

)( qu

1+ r

)k( (1−q)d

1+ r

)N−k − K

(1+ r )N

N∑
k=a

(
N

k

)
qk (1−q)N−k .

(7.36)

Abbreviate
q̃ = q

u

1+ r
∈ (0,1). (7.37)

Note that

1− q̃ = 1− qu

1+ r
= 1+ r −u 1+r−d

u−d

1+ r
= (1+ r )(u −d)−u(1+ r −d)

(u −d)(1+ r )

= ud − (1+ r )d

(u −d)(1+ r )
= u −1− r

u −d

d

1+ r
= (1−q)

d

1+ r
.

(7.38)

Therefore (7.36) becomes

C0 = S0

N∑
k=a

(
N

k

)
q̃k (1− q̃)N−k − K

(1+ r )N

N∑
k=a

(
N

k

)
qk (1−q)N−k . (7.39)

Equivalently,

C0 = S0P[Y ≥ a]− K

(1+ r )N
P[Z ≥ a], (7.40)

where Y is Bin(N , q̃) and Z is Bin(N , q).
The above computation in summary gives:

Theorem 7.6 (Binomial Option Pricing Formula). The no-arbitrage price C0 equals

C0 = S0Φ(a; N , q̃)− K

(1+ r )N
Φ(a; N , q),

where

q̃ = q
u

1+ r
, q = 1+ r −d

u −d
,

a = min{k ∈N0 : uk d N−k S0 ≥ K }

= min

{
k ∈N0 : k ≥ logK − log(Sd N )

logu − logd

}
,
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and Φ(a; N , p) = ∑
k≥a

(N
k

)
pk (1− p)N−k is the complementary binomial distribution function. If a > N , then

C = 0.

7.3.2 ?lack-Scholes Option Pricing Formula

In this section we move from discrete to continuous time, replacing Simple Random Walk by Brownian Mo-
tion as a model for stock prices. The rationale behind this is that the financial market moves very fast: every
second thousands of transactions take places worldwide. It is therefore justified to think of time as running
forward in very short units.

Figure 7.3: Fischer Black, Myron Scholes, Robert Merton.

Wikipedia:

“The Black-Scholes or Black-Scholes-Merton model is a mathematical model of a financial market con-
taining certain derivative investment instruments. From the model, one can deduce the Black-Scholes
formula, which gives a theoretical estimate of the price of European-style options. The formula led to
a boom in options trading and legitimised scientifically the activities of the Chicago Board Options
Exchange and other options markets around the world. It is widely used, although often with ad-
justments and corrections, by options market participants. Many empirical tests have shown that the
Black-Scholes price is "fairly close" to the observed prices ...

The Black-Scholes model was first published by Fischer Black and Myron Scholes in their 1973 pa-
per, "The Pricing of Options and Corporate Liabilities", published in the Journal of Political Economy.
They derived a partial differential equation, now called the Black-Scholes equation, which estimates
the price of the option over time. The key idea behind the model is to hedge the option by buying and
selling the underlying asset in just the right way and, as a consequence, to eliminate risk. This type of
hedging is called delta hedging and is the basis of more complicated hedging strategies such as those
engaged in by investment banks and hedge funds.”

Fischer Black, Myron Scholes and Robert Merton (see Fig. 7.3) won the Nobel prize in economics for their
invention.

We make the following assumptions on the assets:

(1) (“Riskless Rate”) The rate of return on the riskless asset is constant and is called the risk-free interest
rate.
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(2) (“Brownian Motion”) The instantaneous log returns of the stock price form an infinitesimal random
walk with drift, more precisely, a geometric Brownian motion (also known as exponential Brownian
motion). We will assume that its drift µ and volatility σ are constant:

log
St+∆t

St
=µ∆t +σ

p
∆t εt , 0 <∆t ¿ 1. (7.41)

Here, εt is the random component of the price evolution. To formalise the above model, we consider
the corresponding Stochastic Differential Equation (SDE):

dSt =µSt d t +σSt dWt . (7.42)

Even though SDE’s are not treated in this course, we mention that (7.42) has an explicit solution

St = S0 exp

[(
µ− σ2

2

)
t +σWt

]
, (7.43)

where (Wt )t≥0 is the standard Brownian motion. The process (St )t≥0 given by (7.43) is called geometric
Brownian motion.

(3) The stock does not pay a dividend.

Exercise 7.7. Consider (7.43). Show with the help of explicit computations that, for all t ≥ 0,

E(St ) = S0eµt ,

Var(St ) = S2
0e2µt

(
eσ

2t −1
)

.
(7.44)

Hint: First prove that if Z has distribution N (0, t ), then

E(eaZ ) = 1p
2πt

∫
R

eax e−x2/2t d x = ea2t/2, a ∈R, t > 0. (7.45)

We make the following assumptions on the market:

(1) There is no arbitrage (i.e., there is no way to make a riskless profit).

(2) It is possible to borrow and lend any amount of cash, even fractional, at the riskless rate.

(3) It is possible to buy and sell any amount, even fractional, of the stock (which includes short selling).

(4) The above transactions do not incur any fees or costs (i.e., frictionless market).

Theorem 7.7. The Black-Scholes formula for the arbitrage-free price C of a call option with strike price K and
expiration time t is given by

C = SΦ(d1)−K e−r tΦ(d2), (7.46)

where

d1 =
log(S/K )+

(
r + σ2

2

)
t

σ
p

t
, d2 = d1 −σ

p
t =

log(S/K )+
(
r − σ2

2

)
t

σ
p

t
, (7.47)

and
S = current stock price,

K = strike price,

r = (continuously compounded) risk-free interest rate,

σ= volatility of stock price

(standard deviation of short-term returns ),

t = time remaining until expiration

(expressed as a percent of a year).

(7.48)
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andΦ(d) = ∫ ∞
d

1p
2π

e−x2/2d x is the standard normal cumulative distribution function.

Note that the formula in (7.46)–(7.47) does not depend on the value of the drift µ.

7.3.3 ?Derivation

In this section we give the proof of Theorem 7.7. This is done by taking the formula in Theorem 7.5 and
passing to the limit N →∞ after speeding up time by N . The proof below is straightforward but technical.

Suppose that the expiration time is t . We divide the time interval [0, t ] into n À 1 intervals of equal length
∆t = t/n. Consider the Binomial Asset Pricing Model with time horizon n and parameters

u = un , d = dn , r̂ = r̂n , (7.49)

which we choose later.

(A) Matching interest rates:

In the continuous Black-Scholes model, 1 euro invested in a risk-free asset (bond) will result in er t euros. In
the discrete binomial asset pricing model with one-period interest r̂ , it will result in (1+ r̂ )n euros. Hence

(1+ r̂ )n = er t ⇒ 1+ r̂ = er t
n = er∆t ⇒ r̂ = er∆t −1 = r∆t +O((∆t )2). (7.50)

(B) Matching up and down factors:

In order to be consistent with (7.43), abbreviate µ̃=µ− σ2

2 and put

d = dn = exp
(
µ̃∆t −σ

p
∆t

)
= exp

(
µ̃

t

n
−σ

√
t

n

)
,

u = un = exp
(
µ̃∆t +σ

p
∆t

)
= exp

(
µ̃

t

n
+σ

√
t

n

)
.

(7.51)

As we will see later, the value of µ̃ does not affect the price of the option. Then

Sn = S0 exp

(
µ̃t +σ

[p
t

1p
n

n∑
k=1

Xk

])
, (7.52)

where Xk = 1 if ωk = H (up movement) and Xk =−1 if ωk = T (down movement). In this way, Sn matches the
limiting price that follows the geometric Brownian motion

St = S0 exp(µ̃t +σWt ) (7.53)

when p = 1
2 : P[ωk = H ] =P[ωk = T ] = 1

2 =P[Xk = 1] =P[Xk =−1]. The corresponding parameters q and q̃ are
given by

q = 1+ r̂ −d

u −d
= er∆t −eµ̃∆t−σp∆t

eµ̃∆t+σp∆t −eµ̃∆t−σp∆t
, q̃ = q

u

1+ r̂
= 1−e(µ̃−r )∆t−σp∆t

1−e−2σ
p
∆t

. (7.54)

Exercise 7.8. ? For a function h : R→ R with h(0) = 0, the notation h(x) = O(xk ) as x → 0 for some k ∈ N0

means that there exist δ> 0 and 0 < M <∞ such that

|h(x)| ≤ M |x|k ∀x ∈ (−δ,δ). (7.55)

This statement is equivalent to limsupx→0,x 6=0 |h(x)/xk | <∞. Similarly, h(x) = i (x)+O(xk ) means that h(x)−
i (x) =O(xk ). It is easy to see that if h(x) =O(xk ) and i (x) =O(x l ) for some k, l ∈N0 with k ≤ l , then
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(i) i (x) =O(xk ).

(ii) ah(x)+bi (x) =O(xk ) for all a,b ∈R.

(iii) h(x)i (x) =O(xk+l ).

Show the following:

(a) If h(x) =O(xk ) for some k ∈N0, then 1/(1+h(x)) =O(1).

(b) If h(x) =O(x2) and i (x) =O(x2), then (ax+b+h(x))/(c + i (x)) = (ax+b)/c +O(x2) for all a,b,c ∈Rwith
c 6= 0.

(c) The exponential function satisfies ex =∑N
n=0

xn

n! +O(xN+1) for all N ∈N0.

(d) For ∆t ↓ 0,

q = 1

2
+ 1

2

r − µ̃− 1
2σ

2

σ

p
∆t +O(∆t ), (7.56)

q̃ = 1

2
+ 1

2

r − µ̃+ 1
2σ

2

σ

p
∆t +O(∆t ). (7.57)

Hint: Use (7.54) for (7.56), and q̃ = ( u
1+r̂ )q for (7.57).

It remains to determine the minimal a ∈Z+ such that

uad n−aS0 ≥ K , (7.58)

or, equivalently,

exp

(
µ̃t +2aσ

√
t

n
−nσ

√
t

n

)
S0 ≥ K . (7.59)

Thus, a is the minimal integer such that

a ≥ 1

2σ
√

t
n

(
log(K /S0)+σpnt − µ̃t

)
= log(K /S0)

2σ
p

t

p
n + 1

2
n − µ̃

p
t

2σ

p
n. (7.60)

Abbreviate the right-hand side by an . Suppose that V is Bin(n, p). Then

P[Vn ≥ an] =P
[

Vn −npp
n

≥ an −npp
n

]
. (7.61)

By the CLT we have
Vn −npp

n
=⇒ Z , Z ∼ N

(
0, p(1−p)

)
, n →∞. (7.62)

Hence if limn→∞(an −np)/
p

n = z, then

lim
n→∞P[Vn ≥ an] = lim

n→∞P
[

Vn −npp
n

≥ an −npp
n

]
=P[Z ≥ z] = 1√

2πp(1−p)

∫ +∞

z
exp

(
− x2

2p(1−p)

)
d x

= 1p
2π

∫ +∞
zp

p(1−p)

exp

(
−x2

2

)
d x = 1−Φ

( z√
p(1−p)

)
,

(7.63)

whereΦ is the cumulative distribution function of the standard normal random variable N (0,1).
With a little bit of extra work the above can be generalised to the case where p depends on n as well (like

our probabilities q , q̃), as stated in the following lemma the proof of which is left to the reader.
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Lemma 7.8. Suppose that Vn is Bin(n, pn) with limn→∞ pn = p ∈ (0,1). Suppose further that an is such that

lim
n→∞

an −npnp
n

= z ∈R. (7.64)

Then
lim

n→∞P[Vn ≥ an] = 1−Φ
( z√

p(1−p)

)
. (7.65)

By Exercise 7.8, we have

q = qn = 1

2
+ 1

2

r − µ̃− 1
2σ

2

σ

√
t

n
+O

(
t

n

)
,

q̃ = q̃n = 1

2
+ 1

2

r − µ̃+ 1
2σ

2

σ

√
t

n
+O

(
t

n

)
,

(7.66)

and hence limn→∞ qn = 1
2 .

Finally, let us compute the limits (recall (7.47) for the definition of d1,d2)

an −nqnp
n

= 1p
n

[
log(K /S0)

2σ
p

t

p
n + 1

2
n − µ̃

p
t

2σ

p
n − n

2
− r − µ̃− 1

2σ
2

2σ

p
nt +O(t )

]

= log(K /S0)

2σ
p

t
− r − 1

2σ
2

2σ

p
t + 1p

n
O(t ) →−1

2
d2, n →∞.

(7.67)

and
an −nq̃np

n
= 1p

n

[
log(K /S0)

2σ
p

t

p
n + 1

2
n − µ̃

p
t

2σ

p
n − n

2
− r − µ̃+ 1

2σ
2

2σ

p
nt +O(t )

]

= log(K /S0)

2σ
p

t
− r + 1

2σ
2

2σ

p
t + 1p

n
O(t ) →−1

2
d1, n →∞.

(7.68)

The no-arbitrage price for the n-period European call option equals

C (n) = S0P[Y ≥ an]− K

(1+ r̂ )n P[Z ≥ an] (7.69)

converges as n →∞ to

C = S0

1−Φ

−1
2 d2√

1
4


− K

er t

1−Φ

−1
2 d1√

1
4




= S0

(
1−Φ(−d2

))−K e−r t
(
1−Φ(−d1

))
= S0Φ (d2)−K e−r tΦ (d1) .

(7.70)

This completes the proof of Theorem 7.7.
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